Abstract:
An enhanced communication connector assembly capable of meeting Category 6 performance levels with respect to near end crosstalk (NEXT), when the assembly is connected to a mating connector. The assembly includes a wire board, and a number of elongated terminal contact wires with base portions that are supported on the board. The contact wires have free end portions opposite the base portions for making electrical contact with a mating connector. A crosstalk compensating device on the wire board is constructed and arranged to cooperate with sections of selected terminal contact wires to provide capacitive compensation coupling between the selected terminal contact wires, when the contact wires are engaged by the mating connector.
Abstract:
A connector block for electrically cross-connecting two sets of conductors. The connector block has a wiring block with a plurality of insulation displacement contacts for mating with a first set of TIP conductors and a second set of RING conductors. An index strip made from dielectric material, is provided for securing the TIP and RING conductors against their respective contacts, wherein the index strip includes a plurality of C-shaped metal clips which provide crosstalk compensation in the connector block thereby providing the connector block with a worst conductor pair to conductor pair near-end crosstalk loss @100 MHz of better than 55 dB.
Abstract:
A communication connector assembly including a wire board, and a number of elongated terminal contact wires extending above a top surface of the board. The contact wires have free end portions for making electrical contact with a mating connector, and base portions formed opposite the free end portions for supporting the contact wires on the board and for connecting the wires to conductors on or within the board. The base portions project normal from the top surface of the board. Pairs of the contact wires are coupled to one another along a first coupling region between their free end portions and their base portions and horizontal with respect to the top surface of the wire board, so that crosstalk introduced by the mating connector of a given polarity, is reduced over the first coupling region. The base portions are also configured to enter the wire board with a pattern defining one or more second coupling regions wherein the base portions are coupled to one another with a polarity opposite the given polarity, so that the introduced crosstalk is further reduced over the second coupling regions.
Abstract:
Capacitive crosstalk compensation coupling is achieved in a communication connector by the use of a capacitor compensation assembly. The assembly includes a housing constructed to be associated with a communication connector having elongated terminal contact wires. One or more crosstalk compensation capacitors are supported in the housing. Each compensation capacitor includes a first electrode having a first terminal, a second electrode having a second terminal, and a dielectric spacer is disposed between the first and the second electrodes. The terminals of the electrodes are exposed at positions outside of the housing so that selected terminal contact wires of the connector make electrical contact with corresponding terminals of the compensation capacitors to provide capacitive coupling between the selected contact wires when the contact wires are engaged by a mating connector.
Abstract:
Both differential mode-to-differential mode crosstalk compensation and differential-to-common (or common mode-to-differential mode) crosstalk compensation are realized by using a pattern of conductor crossovers in a multi-pair electrical connector dictated by the algorithm (a−b)n with n≧3, where n determines the number of compensating stages and the coefficients of the expanded algorithm in each stage. An electrical connector with a pattern of conductors fashioned with these constraints among several of the pairs of conductors.
Abstract:
A modular plug is provided having a dielectric housing including a first end and a second end. The first end defines an electrical connector section having signal conductors arranged to mate with a modular jack. At least two substantially planar blades are positioned adjacent to one another in the first end such that a dielectric wall is positioned between the blades with an edge portion of each of the blades being electrically and mechanically accessible, wherein each of the blades is aligned with one of the signal conductors. A modular jack is provided that includes an insulating body having an interior cavity communicating with a modular plug receiving opening formed in a front end of the body for receiving a complementary modular plug. A plurality of openings in the body communicate with the cavity and are sized and shaped to each receive a jack contact. A plurality of jack contacts are mounted within the cavity. Each jack contact has an engagement portion exposed within the cavity wherein each engagement portion of each of the jack contacts comprises an upper interface region and a lower interface region that are laterally offset relative to one another such that the lower interface region is spaced away from the modular plug receiving opening.
Abstract:
A communications connector assembly capable of meeting proposed Category 6 performance levels with respect to near end crosstalk. The assembly includes a wire board having a front portion, and a number of elongated terminal contact wires with base portions connected at one end to the board, and free end portions for electrically contacting a mating connector. The terminal contact wires extend parallel and co-planar with one another above the front portion of the board, and their free end portions project from the front portion of the board. The free end portions are configured to be deflected resiliently toward the board when the mating connector engages them in a direction parallel to the board. A crosstalk compensating device is associated with at least one of the terminal contact wires at a position where the wires are co-planar with one another.
Abstract:
Disclosed is a device for reducing crosstalk in an electrical connector. The device includes an insulating board with a plurality of layers. A first plurality of pairs of conductive paths is formed on a surface of at least one layer, and a second plurality of pairs of conductive paths is vertically spaced therefrom. The paths are arranged so that at least one conductive path in the first plurality of pairs overlies at least two conductive paths from different pairs in the second plurality of pairs. The capacitive coupling between the paths results in crosstalk having a polarity opposite to that of the connector so as to compensate for the connector crosstalk.
Abstract:
An electrical connector 60 achieves improved transmission performance by introducing predetermined amounts of compensation between two pairs of conductors that extend from its input terminals to its output terminals along interconnection paths. Electrical signals on one pair of conductors are coupled onto the other pair of conductors in two or more compensation stages that are time delayed with respect to each other. Illustratively, the electrical connector is a modular jack that is adapted to receive a modular plug 20. Associated with the modular plug and the input of the modular jack there exists a known amount of offending crosstalk A.sub.0, which is approximately canceled by the two or more stages of compensating crosstalk. In a first stage, compensating crosstalk A.sub.1 is introduced between the pairs, and it has a first predetermined magnitude and phase at a given frequency. In a second stage, compensating crosstalk A.sub.2 is introduced between the pairs, and it has a second predetermined magnitude and phase at the given frequency. Multiple compensation stages are needed because, at high frequencies, compensating crosstalk cannot be introduced that is exactly 180 degrees out of phase with the offending crosstalk because of propagation delay. The electrical connector 60 is constructed using a multi-layer printed wiring board 600 having input and output terminals where connection to metallic wires is made. These terminals are interconnected on the printed wiring board by metallic paths that are arranged to provide multiple stages of compensating crosstalk. When the connector 60 is joined to a plug 20, the near-end crosstalk of the combined structure is extremely low at frequencies up to at least 200 MHz.
Abstract:
Disclosed is an electrical connector which compensates for near-end crosstalk at its mating section with near-end crosstalk of an opposite polarity and essentially equal magnitude. Conductive plates connected to the conductors provide capacitive coupling unbalance between the adjacent pairs to produce the necessary opposite polarity, equal magnitude near-end crosstalk.