Abstract:
Disclosed is a power inverter which converts voltage from a DC source into high frequency rectangular alternating voltage pulses which are transferred to a load via a transformer with a ferromagnetic core having no air gap. An additional indicator winding on the transformer, which is connected to a differential circuit which in turn is connected to a control circuit, makes it possible to control the process of the reversal of the magnetization of the core. Switching on the primary winding takes place when the permeability of the transformer's core achieves its maximum. This special feature makes it possible to minimize the size of the transformer, while allowing transferring maximum energy to the load with minimum of the magnetization frequency and losses.
Abstract:
Disclosed is a power inverter which converts voltage from a DC source into high frequency rectangular alternating voltage pulses which are transferred to a load via a transformer with a ferromagnetic core having no air gap. An additional indicator winding on the transformer, which is connected to a differential circuit which in turn is connected to a control circuit, makes it possible to control the process of the reversal of the magnetization of the core. Switching on the primary winding takes place when the permeability of the transformer's core achieves its maximum. This special feature makes it possible to minimize the size of the transformer, while allowing transferring maximum energy to the load with minimum of the magnetization frequency and losses.
Abstract:
In order to increase the accuracy of non-invasive glucose measurement, the device uses a combination of three non-invasive methods: ultrasonic, electromagnetic and thermal. The non-invasive glucose monitor comprises a Main Unit, which drives three different sensor channels (one per technology), located on an external unit configured as an ear clip attached to the subject's ear lobe. To effect the ultrasonic channel, ultrasonic piezo elements are positioned on opposing portions of the ear clip and thus opposite sides of the ear lobe. For implementation of the electromagnetic channel, capacitor plates are positioned on opposing portions of the ear clip and the ear lobe serves as the dielectric. The thermal channel includes a heater and a sensor positioned on the ear clip in close juxtaposition to the ear lobe.
Abstract:
In order to increase the accuracy of non-invasive glucose measurement, the device uses a combination of three non-invasive methods: ultrasonic, electromagnetic and thermal. The non-invasive glucose monitor comprises a Main Unit, which drives three different sensor channels (one per technology), located on an external unit configured as an ear clip attached to the subject's ear lobe. To effect the ultrasonic channel, ultrasonic piezo elements are positioned on opposing portions of the ear clip and thus opposite sides of the ear lobe. For implementation of the electromagnetic channel, capacitor plates are positioned on opposing portions of the ear clip and the ear lobe serves as the dielectric. The thermal channel includes a heater and a sensor positioned on the ear clip in close juxtaposition to the ear lobe.
Abstract:
In order to increase the accuracy of non-invasive glucose measurement, the device uses a combination of three non-invasive methods: ultrasonic, electromagnetic and thermal. The non-invasive glucose monitor comprises a Main Unit, which drives three different sensor channels (one per technology), located on an external unit configured as an ear clip attached to the subject's ear lobe. To effect the ultrasonic channel, ultrasonic piezo elements are positioned on opposing portions of the ear clip and thus opposite sides of the ear lobe. For implementation of the electromagnetic channel, capacitor plates are positioned on opposing portions of the ear clip and the ear lobe serves as the dielectric. The thermal channel includes a heater and a sensor positioned on the ear clip in close juxtaposition to the ear lobe.