Abstract:
Methods for building a neutron detector are disclosed, in which the neutron detector comprises at least two conductive cathode sheets lying parallel to one another and coated with neutron reactive material on at least one side thereof; dielectric material separating the cathode sheets and covering less than about 80% of their surface area; and a plurality of anode wires lying generally parallel to the cathode sheets and separated from them by the dielectric, with the distance between adjacent anode wires being no more than twenty times the distance between said cathode sheets. The cathode sheets may be flat or curved; they may be separate plates or they may be successive folds or windings of a single folded or spiral-shaped metal sheet.
Abstract:
A neutron detector comprises a gas-filled dielectric shell, preferably a glass balloon, having opposite electrodes. An electric field is established whereby ionizing particles may be detected via ionization and current flow in the gas, using a pulse height analyzer or other conventional means. The dielectric shell preferably has low gas permeability and a bulk resistivity in the range of 108 to 1017 Ω-m, and is preferably in the millimeter to centimeter size range. Multiple balloons may be arranged in parallel or may be individually addressable by the detector electronics.
Abstract:
A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.
Abstract:
A neutron detector comprises at least two conductive cathode sheets lying parallel to one another and coated with neutron reactive material on at least one side thereof; dielectric material separating the cathode sheets and covering less than about 80% of their surface area; and a plurality of anode wires lying generally parallel to the cathode sheets and separated from them by the dielectric, with the distance between adjacent anode wires being no more than twenty times the distance between said cathode sheets. The cathode sheets may be flat or curved; they may be separate plates or they may be successive folds or windings of a single folded or spiral-shaped metal sheet. Related methods for building the detector are disclosed.
Abstract:
A neutron detector comprises a gas-filled dielectric shell, preferably a glass balloon, having opposite electrodes. An electric field is established whereby ionizing particles may be detected via ionization and current flow in the gas, using a pulse height analyzer or other conventional means. The dielectric shell preferably has low gas permeability and a bulk resistivity in the range of 108 to 1017 Ω-m, and is preferably in the millimeter to centimeter size range. Multiple balloons may be arranged in parallel or may be individually addressable by the detector electronics.
Abstract:
A neutron detector comprises at least two conductive cathode sheets lying parallel to one another and coated with neutron reactive material on at least one side thereof; dielectric material separating the cathode sheets and covering less than about 80% of their surface area; and a plurality of anode wires lying generally parallel to the cathode sheets and separated from them by the dielectric, with the distance between adjacent anode wires being no more than twenty times the distance between said cathode sheets. The cathode sheets may be flat or curved; they may be separate plates or they may be successive folds or windings of a single folded or spiral-shaped metal sheet. Related methods for building the detector are disclosed.
Abstract:
A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.
Abstract:
A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.
Abstract:
A neutron detector comprises a gas-filled dielectric shell, preferably a glass balloon, having opposite electrodes. An electric field is established whereby ionizing particles may be detected via ionization and current flow in the gas, using a pulse height analyzer or other conventional means. The dielectric shell preferably has low gas permeability and a bulk resistivity in the range of 108 to 1017 Ω-m, and is preferably in the millimeter to centimeter size range. Multiple balloons may be arranged in parallel or may be individually addressable by the detector electronics.
Abstract:
A neutron detector comprises at least two conductive cathode sheets lying parallel to one another and coated with neutron reactive material on at least one side thereof; dielectric material separating the cathode sheets and covering less than about 80% of their surface area; and a plurality of anode wires lying generally parallel to the cathode sheets and separated from them by the dielectric, with the distance between adjacent anode wires being no more than twenty times the distance between said cathode sheets. The cathode sheets may be flat or curved; they may be separate plates or they may be successive folds or windings of a single folded or spiral-shaped metal sheet. Related methods for building the detector are disclosed.