摘要:
A method is disclosed for providing tomographic pictures of a patient with the aid of a tomographic system by using contrast medium injections. The patient is firstly injected with a defined test bolus, while the temporal concentration profile of the contrast medium in at least one body region is determined in at least one scanning plane. The functional parameters of a prediction model that maps or at least approximates the relationship between the profile of a contrast medium injection and the temporal profile of the contrast medium concentration in the body region are determined from the measured profile of the contrast medium concentration in relation to the profile of the test bolus injection. After the specification of a desired contrast in the body region, the profile of a contrast medium injection that is required therefore is automatically calculated in temporal relationship with the scan, and the start of the tomographic scan and the start of the contrast medium injection and the profile thereof are started automatically in a fashion temporally tuned to one another.
摘要:
A method is disclosed for forecasting the contrast medium flow in a living body, in particular in a patient, in which a defined test bolus with a contrast medium is injected, preferably intravenously and with a known injection flow profile, into the body, preferably into a blood vessel. The time concentration profile of the contrast medium is observed and determined over a limited time period with a number of measuring instants at at least one location in the body with the aid of a tomographic method. The time profile of the contrast medium concentration of another contrast medium dose is forecast with the aid of a linear cause/effect formulation from the measured data obtained via the distribution of the contrast medium. The following calculation formula is then used for forecasting the time concentration profile {tilde over (c)}R(t) of the contrast medium at at least one of the previously measured locations of the body: c ~ R ( t ) = 1 F T ∑ n = na n = ne ∫ x = xa x = xe ⅆ t ′ c ~ R ( t + t 0 T - n Δ T - t ′ ) b R ′ ( t ′ ) .
摘要:
A method is disclosed for determining and displaying perfusion parameters. In at least one embodiment, the method includes measuring an arterial contrast agent profile; measuring a contrast agent profile in a tissue of an organ; temporally synchronizing measured values of the arterial contrast agent profile and the contrast agent profile by interpolation; fitting a theoretical parameterized contrast agent profile to the measured contrast agent profile in the tissue by minimizing the differences between the theoretical and measured contrast agent profiles over a multiplicity of times in a measurement interval by fitting function parameters; and determining at least one perfusion parameter from the function parameters in the case of minimal deviation between the theoretical and measured contrast agent profiles.
摘要:
A weighted method is for producing images with the aid of a spiral computed tomography unit. Further, in a CT unit, the detector and beam are tuned to one another in such a way that a drop in dose rate occurs at the edges within the detector. The form of the weighting function corresponds at least approximately to the dose rate characteristic and/or to the characteristic of the signal quality of the detector.
摘要:
A method is for image reconstruction for computed tomography with a non-one-dimensional, extended detector. The rays of the detector are weighted during the backprojection as a function of their position in the beam.
摘要:
A method is disclosed for determining and displaying perfusion parameters. In at least one embodiment, the method includes measuring an arterial contrast agent profile; measuring a contrast agent profile in a tissue of an organ; temporally synchronizing measured values of the arterial contrast agent profile and the contrast agent profile by interpolation; fitting a theoretical parametrized contrast agent profile to the measured contrast agent profile in the tissue by minimizing the differences between the theoretical and measured contrast agent profiles over a multiplicity of times in a measurement interval by fitting function parameters; and determining at least one perfusion parameter from the function parameters in the case of minimal deviation between the theoretical and measured contrast agent profiles.
摘要:
A method is disclosed for providing tomographic pictures of a patient with the aid of a tomographic system by using contrast medium injections. The patient is firstly injected with a defined test bolus, while the temporal concentration profile of the contrast medium in at least one body region is determined in at least one scanning plane. The functional parameters of a prediction model that maps or at least approximates the relationship between the profile of a contrast medium injection and the temporal profile of the contrast medium concentration in the body region are determined from the measured profile of the contrast medium concentration in relation to the profile of the test bolus injection. After the specification of a desired contrast in the body region, the profile of a contrast medium injection that is required therefore is automatically calculated in temporal relationship with the scan, and the start of the tomographic scan and the start of the contrast medium injection and the profile thereof are started automatically in a fashion temporally tuned to one another.
摘要:
A method is disclosed for forecasting the contrast medium flow in a living body, in particular in a patient, in which a defined test bolus with a contrast medium is injected, preferably intravenously and with a known injection flow profile, into the body, preferably into a blood vessel. The time concentration profile of the contrast medium is observed and determined over a limited time period with a number of measuring instants at at least one location in the body with the aid of a tomographic method. The time profile of the contrast medium concentration of another contrast medium dose is forecast with the aid of a linear cause/effect formulation from the measured data obtained via the distribution of the contrast medium. The following calculation formula is then used for forecasting the time concentration profile {tilde over (c)}R(t) of the contrast medium at at least one of the previously measured locations of the body: c ~ R ( t ) = 1 F T ∑ n = na n = ne ∫ x = xa x = xe ⅆ t ′ c ~ R ( t + t 0 T - n Δ T - t ′ ) b R ′ ( t ′ ) .
摘要:
A method is disclosed for forecasting the contrast medium flow in a living body, in particular in a patient, in which a defined test bolus with a contrast medium is injected, preferably intravenously and with a known injection flow profile, into the body, preferably into a blood vessel. The time concentration profile of the contrast medium is observed and determined over a limited time period with a number of measuring instants at at least one location in the body with the aid of a tomographic method. The time profile of the contrast medium concentration of another contrast medium dose is forecast with the aid of a linear cause/effect formulation from the measured data obtained via the distribution of the contrast medium. The following calculation formula is then used for forecasting the time concentration profile {tilde over (c)}R(t) of the contrast medium at at least one of the previously measured locations of the body: c ~ R ( t ) = 1 F T ∑ n = na n = ne ∫ x = xa x = xe ⅆ t ′ c ~ R ( t + t 0 T - n Δ T - t ′ ) b R ′ ( t ′ ) .