Abstract:
In a particle or sand screen control assembly for mounting on a base pipe used in a well, a sealing strip preferably in the form of a metal strip is used in a weld joint that joins the metal mesh screen of filter media to a solid metal structure or “safe edge”. The sealing strip covers the pores in the screen proximate the metal structure to which it is welded. The sealing strip is a separate thin sheet of metal that is compatible with the welding metal used in the weld joint, such that the sealing strip becomes unitary with the weld joint. Prior to welding, the sealing strip may be bent around the screen if desired, or may lie flat along the top or bottom surface of the screen.
Abstract:
An expandable well screen has a desirable thin-wall construction together with a simplified fabrication method. In fabricating the screen, a flexible sheet of metal mesh filter media is diffusion bonded to an inner side of a perforated metal sheet which is then deformed to a tubular shape to form a filter structure having an outer perforated tubular shroud interiorly lined with the filter media. The tubular filter structure is telescoped onto a perforated base pipe and has its opposite ends sealingly secured thereto to complete the expandable well screen.
Abstract:
A particle control screen assembly for a perforated pipe used in a well, a sand filter system, and methods of making same are provided. The screen assembly includes a woven mesh filter media disposed about the perforated pipe, and a protective wrapper disposed about the filter media. The protective wrapper comprises an outer perforated layer and an inner layer that is disposed between the outer layer and the filter media. A surface of the inner layer that faces the outer perforated layer has a non-smooth contour, with this surface of the inner layer having portions in direct contact with an inner surface of the outer layer. The inner layer is provided with apertures that are disposed in such a way that fluid cannot flow from the outer surface of the outer perforated layer directly radially both through holes of the outer layer and through the apertures of the inner layer.
Abstract:
A particle control screen assembly for a perforated pipe used in a well, a sand filter system, and methods of making same are provided. The screen assembly includes a woven mesh filter media disposed about an inner surface of the perforated pipe, and a protective wrapper disposed about the filter media. The protective wrapper comprises a radially inner perforated layer and a radially outer layer that is disposed between the inner layer and the filter media. A surface of the outer layer that faces the inner perforated layer has a non-smooth contour, with this surface of the outer layer having portions in direct contact with an outer surface of the inner layer. The outer layer is provided with apertures that are disposed in such a way that fluid cannot flow from the inner surface of the inner perforated layer directly radially both through holes of the inner layer and through the apertures of the outer layer.
Abstract:
A fuel contamination monitor for separating particulate and liquid contaminants from a liquid fuel is disclosed. The fuel contamination monitor has an inner and outer fluid pervious wall forming a cavity therebetween. A tubular filtering element consisting of a plurality of fluid filtering media layers is mounted in the cavity. The plurality of fluid filtering media layers includes an outer layer of particulate matter separating filter media and a layer of superabsorbing media adjacent to the outer layer. The superabsorbing media is backed by a layer of paper media and an inner layer of screen material. The interior of the inner fluid pervious wall communicates with a liquid fuel outlet port. A shut-off valve is provided which interrupts the flow of liquid fuel through the fuel contamination monitor in the event that the media becomes contaminated before effective contaminant separation.
Abstract:
An expandable well screen has a desirable thin-wall construction together with a simplified fabrication method. In fabricating the screen, a flexible sheet of metal mesh filter media is diffusion bonded to an inner side of a perforated metal sheet which is then deformed to a tubular shape to form a filter structure having an outer perforated tubular shroud interiorly lined with the filter media. The tubular filter structure is telescoped onto a perforated base pipe and has its opposite ends sealingly secured thereto to complete the expandable well screen.
Abstract:
A particle control screen assembly for a perforated pipe used in a well, a sand filter system, and methods of making same are provided. The screen assembly includes a woven mesh filter media disposed about an inner surface of the perforated pipe, and a protective wrapper disposed about the filter media. The protective wrapper comprises a radially inner perforated layer and a radially outer layer that is disposed between the inner layer and the filter media. A surface of the outer layer that faces the inner perforated layer has a non-smooth contour, with this surface of the outer layer having portions in direct contact with an outer surface of the inner layer. The outer layer is provided with apertures that are disposed in such a way that fluid cannot flow from the inner surface of the inner perforated layer directly radially both through holes of the inner layer and through the apertures of the outer layer.
Abstract:
A particle control screen assembly for a perforated pipe used in a well, a sand filter system, and methods of making same are provided. The screen assembly includes a woven mesh filter media disposed about the perforated pipe, and a protective wrapper disposed about the filter media. The protective wrapper comprises an outer perforated layer and an inner layer that is disposed between the outer layer and the filter media. A surface of the inner layer that faces the outer perforated layer has a non-smooth contour, with this surface of the inner layer having portions in direct contact with an inner surface of the outer layer. The inner layer is provided with apertures that are disposed in such a way that fluid cannot flow from the outer surface of the outer perforated layer directly radially both through holes of the outer layer and through the apertures of the inner layer.
Abstract:
An expandable well screen has a desirable thin-wall construction together with a simplified fabrication method. In fabricating the screen, a flexible sheet of metal mesh filter media is diffusion bonded to an inner side of a perforated metal sheet which is then deformed to a tubular shape to form a filter structure having an outer perforated tubular shroud interiorly lined with the filter media. The tubular filter structure is telescoped onto a perforated base pipe and has its opposite ends sealingly secured thereto to complete the expandable well screen.
Abstract:
An expandable well screen has a desirable thin-wall construction together with a simplified fabrication method. In fabricating the screen, a flexible sheet of metal mesh filter media is diffusion bonded to an inner side of a perforated metal sheet which is then deformed to a tubular shape to form a filter structure having an outer perforated tubular shroud interiorly lined with the filter media. The tubular filter structure is telescoped onto a perforated base pipe and has its opposite ends sealingly secured thereto to complete the expandable well screen.