Machine translation split between front end and back end processors
    1.
    发明授权
    Machine translation split between front end and back end processors 有权
    机器翻译分为前端和后端处理器

    公开(公告)号:US08886516B2

    公开(公告)日:2014-11-11

    申请号:US13409419

    申请日:2012-03-01

    CPC classification number: G06F17/289

    Abstract: A method of translation includes uploading a source text portion to a back end processor. The back end processor identifies a subset of translation knowledge associated with the source text portion. The back end processor downloads the subset to a front end processor. A translation engine runs on the front end processor. The translation engine generates a translation of the source text portion as a function of the subset.

    Abstract translation: 一种翻译方法包括将源文本部分上传到后端处理器。 后端处理器识别与源文本部分相关联的翻译知识的子集。 后端处理器将子集下载到前端处理器。 翻译引擎在前端处理器上运行。 翻译引擎生成作为子集的函数的源文本部分的翻译。

    Machine language translation with transfer mappings having varying context
    3.
    发明授权
    Machine language translation with transfer mappings having varying context 有权
    机器语言翻译与转移映射具有不同的上下文

    公开(公告)号:US08275605B2

    公开(公告)日:2012-09-25

    申请号:US12773328

    申请日:2010-05-04

    CPC classification number: G06F17/2827

    Abstract: A computer-implemented machine translation system translates text from a first language to a second language. The system includes a plurality of mappings, each mapping indicative of associating a dependency structure of the first language with a dependency structure of the second language, wherein at least some of the mappings correspond to dependency structures of the first language having varying context with some common elements, and associated dependency structures of the second language to the dependency structures of the first language. A module receives input text in a first language and outputs output text in a second language based on accessing the plurality of mappings.

    Abstract translation: 计算机实现的机器翻译系统将文本从第一语言翻译成第二语言。 该系统包括多个映射,每个映射指示将第一语言的依赖结构与第二语言的依赖结构相关联,其中至少一些映射对应于具有不同上下文的第一语言的依赖结构,具有一些常见的 元素和第二语言的关联依赖结构与第一语言的依赖结构。 模块以第一语言接收输入文本,并且基于访问多个映射以第二语言输出输出文本。

    Automatic extraction of transfer mappings from bilingual corpora
    4.
    发明授权
    Automatic extraction of transfer mappings from bilingual corpora 有权
    自动提取双语语料库的转移映射

    公开(公告)号:US07734459B2

    公开(公告)日:2010-06-08

    申请号:US09899554

    申请日:2001-07-05

    CPC classification number: G06F17/2827

    Abstract: A method of aligning nodes of dependency structures obtained from a bilingual corpus includes a two-phase approach wherein a first phase comprises associating nodes of the dependency structures to form tentative correspondences. The nodes of the dependency structures are then aligned as a function of the tentative correspondences and structural considerations. Mappings are obtained from the aligned dependency structures. The mappings can be expanded with varying types and amounts of local context in order that a more fluent translation can be obtained when translation is performed.

    Abstract translation: 从双语语料库获得的依赖关系结构的对齐节点的方法包括两阶段方法,其中第一阶段包括关联依赖结构的节点以形成临时对应。 依赖结构的节点随后作为临时对应关系和结构考虑的函数进行对齐。 映射从对齐的依赖结构获得。 可以用不同类型和数量的本地语境来扩展映射,以便在进行翻译时可以获得更流畅的翻译。

    System and method for matching a textual input to a lexical knowledge based and for utilizing results of that match
    5.
    发明授权
    System and method for matching a textual input to a lexical knowledge based and for utilizing results of that match 失效
    用于将文本输入与基于词汇知识相匹配并用于利用该匹配的结果的系统和方法

    公开(公告)号:US07013264B2

    公开(公告)日:2006-03-14

    申请号:US10977910

    申请日:2004-10-29

    Abstract: The present invention can be used in a natural language processing system to determine a relationship (such as similarity in meaning) between two textual segments. The relationship can be identified or determined based on logical graphs generated from the textual segments. A relationship between first and second logical graphs is determined. This is accomplished regardless of whether there is an exact match between the first and second logical graphs. In one embodiment, the first graph represents an input textual discourse unit. The second graph, in one embodiment, represents information in a lexical knowledge base (LKB). The input graph can be matched against the second graph, if they have similar meaning, even if the two differ lexically or structurally.

    Abstract translation: 本发明可以用于自然语言处理系统中以确定两个文本段之间的关系(诸如意义上的相似性)。 可以基于从文本段生成的逻辑图来识别或确定关系。 确定第一和第二逻辑图之间的关系。 无论第一个和第二个逻辑图之间是否存在精确的匹配,这是完成的。 在一个实施例中,第一图表示输入的文本话语单元。 在一个实施例中,第二个图表示词汇知识库(LKB)中的信息。 输入图可以与第二个图匹配,如果它们具有相似的含义,即使两者在词汇或结构上不同。

    System and method for machine learning a confidence metric for machine translation
    7.
    发明授权
    System and method for machine learning a confidence metric for machine translation 有权
    用于机器学习机器翻译的置信度量的系统和方法

    公开(公告)号:US07496496B2

    公开(公告)日:2009-02-24

    申请号:US11725435

    申请日:2007-03-19

    CPC classification number: G06F17/28

    Abstract: A machine translation system is trained to generate confidence scores indicative of a quality of a translation result. A source string is translated with a machine translator to generate a target string. Features indicative of translation operations performed are extracted from the machine translator. A trusted entity-assigned translation score is obtained and is indicative of a trusted entity-assigned translation quality of the translated string. A relationship between a subset of the extracted features and the trusted entity-assigned translation score is identified.

    Abstract translation: 训练机器翻译系统以产生指示翻译结果的质量的置信度分数。 使用机器翻译器翻译源字符串以生成目标字符串。 从机器翻译器提取表示所执行的翻译操作的特征。 获得受信任的实体分配的翻译分数,并且指示被翻译的字符串的受信任的实体分配的翻译质量。 识别提取的特征的子集与可信实体分配的翻译分数之间的关系。

    Multilingual user interface for an operating system
    8.
    发明授权
    Multilingual user interface for an operating system 有权
    用于操作系统的多语言用户界面

    公开(公告)号:US07464334B2

    公开(公告)日:2008-12-09

    申请号:US10766438

    申请日:2004-01-27

    CPC classification number: G06F9/454

    Abstract: In an operating system, a resource handler accepts resource requests from application modules. A resource request identifies a module from which the requested resource is to be obtained. Rather than providing the resource from the identified module, however, the resource handler provides the requested resource from an associated resource module. An association between an executable module and resource modules of different languages is created by a defined file naming convention, optionally using different directories for resource modules of different languages. Some executable modules contain a shared resource reference which can be used to create an association between multiple executable modules and a single set of shared resource modules. A language fallback mechanism allows alternative languages to be used where resource modules of the appropriate language are not available.

    Abstract translation: 在操作系统中,资源处理程序接受来自应用模块的资源请求。 资源请求标识要从其获得请求的资源的模块。 然而,资源处理器不是从所识别的模块提供资源,而是从相关联的资源模块提供所请求的资源。 通过定义的文件命名约定创建可执行模块和不同语言的资源模块之间的关联,可选地为不同语言的资源模块使用不同的目录。 一些可执行模块包含共享资源引用,可用于在多个可执行模块和一组共享资源模块之间创建关联。 语言后备机制允许在不具备相应语言的资源模块的情况下使用替代语言。

    Method and apparatus for unsupervised training of natural language processing units
    9.
    发明授权
    Method and apparatus for unsupervised training of natural language processing units 有权
    自然语言处理单元无人训练的方法和装置

    公开(公告)号:US07233892B2

    公开(公告)日:2007-06-19

    申请号:US11204213

    申请日:2005-08-15

    CPC classification number: G06F17/274

    Abstract: A method of training a natural language processing unit applies a candidate learning set to at least one component of the natural language unit. The natural language unit is then used to generate a meaning set from a first corpus. A second meaning set is generated from a second corpus using a second natural language unit and the two meaning sets are compared to each other to form a score for the candidate learning set. This score is used to determine whether to modify the natural language unit based on the candidate learning set.

    Abstract translation: 训练自然语言处理单元的方法将候选学习集合应用于自然语言单元的至少一个分量。 然后,自然语言单元用于从第一语料库生成意义集。 使用第二自然语言单元从第二语料库生成第二含义集合,并且将两个含义集合彼此进行比较以形成候选学习集合的分数。 该分数用于确定是否基于候选学习集修改自然语言单元。

Patent Agency Ranking