Abstract:
A firewall isolates computer and network resources inside the firewall from networks, computers and computer applications outside the firewall. Typically, the inside resources could be privately owned databases and local area networks (LAN's), and outside objects could include individuals and computer applications operating through public communication networks such as the Internet. Usually, a firewall allows for an inside user or object to originate connection to an outside object or network, but does not allow for connections to be generated in the reverse direction; i.e. from outside in. The disclosed invention provides a special "tunneling" mechanism, operating on both sides of a firewall, for establishing such "outside in" connections when they are requested by certain "trusted" individuals or objects or applications outside the firewall. The intent here is to minimize the resources required for establishing "tunneled" connections (connections through the firewall that are effectively requested from outside), while also minimizing the security risk involved in permitting such connections to be made at all. The mechanism includes special tunneling applications, running on interface servers inside and outside the firewall, and a special table of "trusted sockets" created and maintained by the inside tunneling application. Entries in the trusted sockets table define objects inside the firewall consisting of special inside ports, a telecommunication protocol to be used at each port, and a host object associated with each port. Each entry is "trusted" in the sense that it is supposedly known only by individuals authorized to have "tunneling" access through the firewall from outside. These applications use the table to effect connections through the firewall in response to outside requests identifying valid table entries.
Abstract:
Tissue adjustment implants useful for adjusting a position of tissue in a patient are described. In an embodiment, a tissue adjustment implant includes a main body having a series of outwardly-extending projections. The tissue adjustment implants can be used in a variety of treatments, such as in the treatment of Obstructive Sleep Apnea and snoring.
Abstract:
Devices, kits, and methods useful in the treatment of Obstructive Sleep Apnea (OSA) are described. Example devices include a jig, a first needle, a second needle, and a third needle. An example jig comprises a drill guide and a tongue depressor. A first needle comprises an elongate shaft that defines a bend and a curve. A second needle comprises an elongate shaft that defines a curve. A third needle comprises an elongate shaft that defines a curve.
Abstract:
Medical devices are described herein. More particularly, the disclosure relates to medical devices, systems, and methods for the visualization and treatment of bodily passages, such as an airway, sinus cavity, or sinus passages. An exemplary medical device comprises an elongate member, an actuator moveable between an actuator first position and an actuator second position, and a wire member. The elongate member has a first straight, or substantially straight configuration, when the actuator is in the actuator first position and a second curved configuration when the actuator is in the actuator second position.
Abstract:
Slings, kits, and methods useful in the treatment of Obstructive Sleep Apnea (OSA) are described. An exemplary sling comprises a main body extending along a lengthwise axis and having first and second opposing ends, first and second opposing sides, and first and second opposing surfaces. Each end defines an end loop that defines a passageway extending through the main body. An exemplary method of treatment comprises creating two openings in the mandible of a patient; creating two longitudinal tunnels in the tongue of the patient; creating a transverse tunnel in the tongue of the patient; advancing a sling through the transverse tunnel; pulling each end of the sling through one of the longitudinal tunnels and through one of the openings in the mandible; pulling the tongue toward the front of the mouth or mandible; and securing the sling to a tissue to support the tongue in a new position.
Abstract:
Slings, kits, and methods useful in the treatment of Obstructive Sleep Apnea (OSA) are described. An exemplary sling comprises a main body extending along a lengthwise axis and having first and second opposing ends, first and second opposing sides, and first and second opposing surfaces. Each end defines an end loop that defines a passageway extending through the main body. An exemplary method of treatment comprises creating two openings in the mandible of a patient; creating two longitudinal tunnels in the tongue of the patient; creating a transverse tunnel in the tongue of the patient; advancing a sling through the transverse tunnel; pulling each end of the sling through one of the longitudinal tunnels and through one of the openings in the mandible; pulling the tongue toward the front of the mouth or mandible; and securing the sling to a tissue to support the tongue in a new position.
Abstract:
A system may include a prescription card manager configured to generate medication information cards. The prescription card manager may include a pharmacy database interface configured to receive notifications associated with medication prescriptions, each notification including identifications of a patient, a medication, and instructions associated with a specific medication prescription. A prescription decoder may obtain graphical medication representations based on the identification of the medication and graphical consumption representations based on the identification of instructions associated with the specific medication prescription. A card generator may be configured to generate a representation of a medication information card including one or more of the graphical medication representations and one or more of the graphical consumption representations based on the identification of the patient included in one or more of the notifications.
Abstract:
A firewall isolates computer and network resources inside the firewall from networks, computers and computer applications outside the firewall. Typically, the inside resources could be privately owned databases and local area networks (LAN's), and outside objects could include individuals and computer applications operating through public communication networks such as the Internet. Usually, a firewall allows for an inside user or object to originate connection to an outside object or network, but does not allow for connections to be generated in the reverse direction; i.e. from outside in. The disclosed invention provides a special "tunneling" mechanism, operating on both sides of a firewall, for establishing such "outside in" connections when they are requested by certain "trusted" individuals or objects or applications outside the firewall. The intent here is to minimize the resources required for establishing "tunneled" connections (connections through the firewall that are effectively requested from outside), while also minimizing the security risk involved in permitting such connections to be made at all. The mechanism includes special tunneling applications, running on interface servers inside and outside the firewall, and a special table of "trusted sockets" created and maintained by the inside tunneling application. Entries in the trusted sockets table define objects inside the firewall consisting of special inside ports, a telecommunication protocol to be used at each port, and a host object associated with each port. Each entry is "trusted" in the sense that it is supposedly known only by individuals authorized to have "tunneling" access through the firewall from outside.