摘要:
Disclosed is a method of producing ethanol from lignocellulosic biomass, including a two stage steam pretreatment process. The first stage of the steam pretreatment is carried out by heating the biomass with high pressure steam to a first stage temperature of 140° C. to 180° C. for a first stage time of 30 minutes to 2 hours at a first stage pressure of 105 to 150 psig; and the second steam pretreatment stage is carried out by heating the biomass with high pressure steam to raise the biomass temperature to a second stage temperature of 190° C. to 210° C. for a second stage time of 2 to 10 minutes at a second stage pressure of 167 to 262 psig. Hemicellulose and inhibitors (inhibitory compounds) to downstream hydrolysis and fermentation are preferably removed between the first and second pretreating stages, more preferably after each pretreatment stage.
摘要:
A process for the production of ethanol wherein a hydrolyzed lignocellulosic biomass is fermented in the presence of a stillage residue. The fermentation of cellulosic hydrolysates is improved by adding prior to and/or during fermentation a stillage residue side stream from a corn starch-to-ethanol process as a nutrient source for the yeast organisms used in the fermentation. Stillage residues from the grain dry mill ethanol producing process, including the whole stillage, wet cake, thin stillage, and/or syrup are added to assist as a nitrogen and nutrient source for the fermentive processes. The stillage residue is produced by any grain-to-ethanol process.
摘要:
A process for separating the components of lignocellulosic biomass for the purpose of producing a pure reactive cellulose is disclosed. The process has two stages. In the first stage, the lignocellulosic biomass is pretreated with steam, with or without an acid catalyst, and then pressed, with or without the presence of an eluent, to remove hemicellulose and other impurities. In the second stage, the pretreated biomass is extracted with a solvent such as ethanol with or without acid catalysts in order to remove lignin and release a purified cellulose stream. The extracted cellulose is then rapidly decompressed to rupture the fibrous structure. The process provides a purified cellulose stream that is relatively easy to hydrolyze with enzymes and ferment to biofuels and other chemicals such as ethanol.
摘要:
A NOx storage component comprises caesium silicate (Cs2SiO3) and at least one platinum group metal. The invention also includes a NOx absorber catalyst comprising a NOx storage component according to the invention disposed on a substrate monolith; a method of treating exhaust gas containing NOx from a lean burn internal combustion engine comprising the steps of contacting a NOx storage component comprising caesium silicate (Cs2SiO3) and at least one platinum group metal with lean exhaust gas containing NOx to adsorb NOx thereon; and periodically desorbing adsorbed NOx by contacting the NOx storage component vent with stoichiometric or rich exhaust gas; and a method of making a NOx storage component according to the invention comprising the steps of combining and reacting an aqueous salt of at least one platinum group metal, an aqueous caesium salt and a source of silica.
摘要:
A process is defined for the continuous steam pretreatment and fractionation of corn cobs and low lignin lignocellulosic biomass to produce a concentrated cellulose solid stream that is sensitive to enzymatic hydrolysis. Valuable chemicals are recovered by fractionating the liquid and vapor stream composed of hydrolysis and degradation products of the hemicellulose. Cellulosic derived glucose is produced for fermentation to biofuels. A hemicellulose concentrate is recovered that can be converted to value added products including ethanol.
摘要:
A continuous process for the recovery of ethanol from hemicellulose and cellulose from lignocellulosic biomass. Yield of fermentable sugars can be maximized by continuous operation of the pre-treatment system and careful selection of pretreatment conditions including the addition of only small amounts of dilute mineral acid and low pressure. With this approach, the xylose component that is mainly present in its unfermentable oligomeric form in known pre-hydrolysis Kraft processes can be recovered more efficiently and as a monomer that can be fermented by xylose fermenting yeasts and bacteria. Due to the use of only dilute acids, there is a very low loss of glucose and xylose hence very low production of toxic chemicals (e.g. HMF, furfural) in the pretreatment step. The resulting overall fermentation efficiency of both hexose and pentose sugars is 90% of the theoretical maximum.
摘要:
A process for separating the components of lignocellulosic biomass for the purpose of producing a pure reactive cellulose is disclosed. The process has two stages. In the first stage, the lignocellulosic biomass is pretreated with steam, with or without an acid catalyst, and then pressed, with or without the presence of an eluent, to remove hemicellulose and other impurities. In the second stage, the pretreated biomass is extracted with a solvent such as ethanol with or without acid catalysts in order to remove lignin and release a purified cellulose stream. The extracted cellulose is then rapidly decompressed to rupture the fibrous structure. The process provides a purified cellulose stream that is relatively easy to hydrolyze with enzymes and ferment to biofuels and other chemicals such as ethanol.
摘要:
Disclosed is a method of pretreating biomass in two pretreatment stages as part of a biofuel production process. The first stage pretreatment is carried out by heating the biomass to a first stage temperature of 140° C. to 180° C. for a first stage time of 30 minutes to 2 hours at a first stage pressure of 105 to 150 psig; and the second stage is carried out by heating the biomass to a second stage temperature of 190° C. to 210° C. for a second stage time of 2 to 10 minutes at a second stage pressure of 167 to 262 psig. The biomass may be initially conditioned prior to the first pretreatment stage by atmospheric steam heating and adjusting the moisture content of the biomass. Hemicellulose and inhibitors (inhibitory compounds) to downstream hydrolysis and fermentation are preferably removed between the first and second pretreating stages, more preferably after each pretreatment stage.
摘要:
A process is defined for the continuous steam pretreatment and fractionation of corn cobs and low lignin lignocellulosic biomass to produce a concentrated cellulose solid stream that is sensitive to enzymatic hydrolysis. Valuable chemicals are recovered by fractionating the liquid and vapor stream composed of hydrolysis and degradation products of the hemicellulose. Cellulosic derived glucose is produced for fermentation to biofuels. A hemicellulose concentrate is recovered that can be converted to value added products including ethanol.
摘要:
A method for optimization of a fed batch hydrolysis process wherein the hydrolysis time is minimized by controlling the feed addition volume and/or batch addition frequency of the prehydrolysate and optionally also the enzyme feed. The increase over time in hydrolysate consistency and volume and/or concentration of sugars released in the reactor, so that the enzymatic hydrolysis is controlled, significantly reduces the impact of cellulase feedback inhibition, especially for enzyme contents lower than 0.5%. The overall time to reach conversion of the total prehydrolysate feed is reduced significantly where the batch addition frequency is equal to one batch each time 70% to 90%, preferably 80%, conversion of the previous batch is reached in the reaction mixture. At an enzyme load of 0.3% in the reaction mixture, the optimum frequency each time 80% conversion was reached was found to be one batch every 105 minutes.