Abstract:
Exemplary embodiments are directed to a heat exchanger system for transformers or reactors having at least one coil being cooled by gaseous fluids circulating around the transformer. The system having an enclosure that houses the transformer and the at least one coil, where flow of cooling gaseous fluid passes over the coil and is heated by the heat of the transformer or reactor the heated gas is directed to pass over a thermosiphon heat exchanger which dissipates the heat to a cooling media.
Abstract:
A transformer of dry design is disclosed having a core composed of amorphous material, which is sensitive to mechanical loads, having at least one winding former which surrounds the core and is in each case formed from at least one primary winding and secondary winding, and having at least one holding apparatus. A method for transformer production is also disclosed, wherein the holding apparatus is used to fix the at least one primary winding and secondary winding in each case and for this purpose it acts on each of the end faces of the at least one winding former.
Abstract:
The disclosure relates to a housing for an electric machine, for example, an electric power transformer, such as a dry-type transformer, with cooling channels being provided within the housing for a cooling medium. The electric machine and a cooling system can be arranged in the housing, with vertically arranged first and second channels for the cooling medium being provided. The medium can flow around the electric machine, with the housing accommodating the electric machine and the cooling system substantially forming a hermetic encapsulation.
Abstract:
A wound transformer core is provided with at least one core loop made of a magnetic material. The transformer core includes multiple thin amorphous band-like iron sheets which are concentrically stacked around at least one center axis. A lower yoke section, an upper yoke section, and at least two limb sections are formed. The transformer core includes a modular plate-like support structure which is affixed upright to the center axis on both face sides of the lower yoke section and on both face sides of each limb section such that neighbored iron sheets are affixed together at their outer edge. The modular plate-like support structure includes, for each face side of the corresponding core sections, at least two plate-like modules, which are each connected to each other by a first or second plug-in connection.
Abstract:
A method is provided for producing windings for a dry-type transformer with in each case one winding for the low voltage (LV winding) and one for the high voltage (HV winding). The LV and HV windings are each electrically insulated from one another and have layers which are electrically insulated from one another by virtue of, initially, the winding for the low voltage being produced from electrically conductive wire or tape material and an insulating layer including resin-impregnated fibre material. Prior to the application of the HV winding, the maximum insulating thickness for the layer insulation and the number of fibre rovings corresponding to this insulating thickness can be determined, and each winding layer and the associated insulating layer can be produced simultaneously with a physical offset with respect to one another. To produce the winding, fibre polymer layers can be applied, as layers of insulation, simultaneously with the winding conductor between the individual winding layers of the winding, and the finished winding is subjected to a curing operation.
Abstract:
A dry-type transformer includes at least one high-voltage winding and one low-voltage winding. The windings are operatively connected to one another by an electromagnetic field, and each winding is constructed from winding conductors, wherein the high-voltage winding and the low-voltage winding have a defined distance from one another, and spacers are arranged between the windings and maintain the defined distance.
Abstract:
The disclosure relates to a housing for an electric machine, for example, an electric power transformer, such as a dry-type transformer, with cooling channels being provided within the housing for a cooling medium. The electric machine and a cooling system can be arranged in the housing, with vertically arranged first and second channels for the cooling medium being provided. The medium can flow around the electric machine, with the housing accommodating the electric machine and the cooling system substantially forming a hermetic encapsulation.
Abstract:
A method is disclosed for producing a multi-layer transformer winding. During or after the winding of a conductor layer around a winding body, a layer of electrically insulating material can be applied on the radially outer surface thereof. A dry fiber composite can be used as the insulating material. The fiber composite can be bonded into an insulating layer by heating the transformer winding to a composite temperature.
Abstract:
The invention relates to a method for curing coils 16 which have been produced by a winding method, a coil 16 initially being arranged in an oven 12 for curing. The coil 16 is heated up to a predeterminable temperature and rotated about its longitudinal axis 32 to avoid dripping of resin. The conductor or conductors of the coil 16 is or are flowed through by current, in particular by direct current, and heated in this way. The invention also relates an arrangement for curing coils 16, with which the method according to the invention can be carried out.
Abstract:
A winding for a transformer or coil includes a ribbon electrical conductor and at least one ribbon insulation material layer fitted thereto or applied as ribbon material thereto. The conductor and the insulating material layer are wound to form turns around a winding core along a winding axis. The individual turns of the winding have a predetermined winding angle with respect to the winding axis. A number of turns are located axially alongside one another form one layer, and at least two radially adjacent layers of turns are provided. A first layer of turns is radially adjacent to a second layer produced by changing the winding direction by folding the electrical conductor and the insulating material layer. The total angle, which is produced by the folding, between the longitudinal direction of the ribbon insulating material in the first layer and the corresponding direction of the second layer corresponds to twice the winding angle.