Abstract:
A device is suitable for controlling a rotation-speed of a fan of a display. The device includes a temperature sensor for sensing a current temperature of the display, a memory for storing the current temperature of the display and a first and a second setting-temperature and a control module coupled to the temperature sensor and the memory and adapted to couple to the fan of the display. The control module compares the current temperature of the display with the first and the second setting-temperatures and judging the variation of the current temperature of the display to control the rotation-speed of the fan. If the control module judges out the current temperature of the display sensed by the temperature sensor rises, the control module raises the rotation-speed of the fan when the rotation-speed of the fan is lower than a maximum rotation-speed.
Abstract:
A flat panel display including a base frame, a display panel module, and a heat-conductive structure is provided. The base frame includes a control unit. The display panel module is disposed in the base frame and includes a back bracket, a first heating element, and a second heating element. The first heating element and the second heating element are disposed in the back bracket and electrically connected to the control unit. A first distance is formed between the back bracket and the base frame to define a first air passage, a second distance is formed between the back bracket and the base frame to define a second air passage, and the first distance is shorter than the second distance. The heat-conductive structure is disposed in the first air passage, and the position of the heat-conductive structure is corresponding to the position of the first heating element.
Abstract:
A flat panel display including a base frame, a display panel module, and a heat-conductive structure is provided. The base frame includes a control unit. The display panel module is disposed in the base frame and includes a back bracket, a first heating element, and a second heating element. The first heating element and the second heating element are disposed in the back bracket and electrically connected to the control unit. A first distance is formed between the back bracket and the base frame to define a first air passage, a second distance is formed between the back bracket and the base frame to define a second air passage, and the first distance is shorter than the second distance. The heat-conductive structure is disposed in the first air passage, and the position of the heat-conductive structure is corresponding to the position of the first heating element.
Abstract:
An exhausting structure used in a rear projection TV has a ventilating chamber inside a casing of the TV to separate an optical engine from the casing. A fan is mounted in the ventilating chamber near the optical engine to ventilate the heat from the inside of the TV via a conduit and an outlet. The fan is isolated from outside of the TV to reduce any noise generated from the fan.
Abstract:
This invention provides a cooling apparatus for a light source disposed in a housing, which comprises a light source, a fan device, and an air-flow guiding device. The light source is capable of providing an optical energy propagating outward in an optical path. The fan device is disposed in a predetermined distance for producing airflow. The air-flow guiding device is disposed between the light source and the fan device for guiding the airflow towards the light source to cool down the light source.
Abstract:
The present invention sucks the air from the fan at the top of the imaging assembly of the optical engine and blows the air via the air duct device downward. Some of the air is guided by the diversion board, aslant guiding surface, and aslant isolating board of the air duct device and blown into the imaging assembly for cooling the optical components. Some of the air is guided through a first air duct, a second air duct, and a third air duct extended from the outside of this main body respectively to the outer surface of the light valves. Further, some of the airflow is guided into a branch air duct and blown to a vent of the imaging assembly. By means of the changing direction diversion board, the airflow is guided towards the polarizer module, and flows out from a vent on the other side.
Abstract:
A cooling device for projector, comprising a light source, an exhaust fan, an air directing fan, an air duct, air inlet windows, an optical engine, a circuit board, a light cut, and a power supply to constitute a projector device with high brightness and high contrast. The projector includes a design that directs hot air flow directly into fan blades of an exhaust fan, thereby effectively reducing adverse effects and solving problems of conventional technology, such as failure to direct hot air flow into the fan blades of the exhaust fan, resulting in excessively high average temperature in the fan hub area that is in alignment with the hot air current, and high working temperature of motor bearings, control circuits, rotors and stators in the fan hub, so that the fan hub can be operating under lower temperatures, thereby enhancing normal performance, effective working life and reliability of the fan and the projector.
Abstract:
A light source module including a planar light source, a heat dissipation medium, and a heat dissipation element are disclosed. The planar light source includes a light box, electrodes, and an insulation layer. The light box has a light emitting surface and a bottom surface opposite to the light emitting surface. The electrodes and the insulation layer are disposed on the bottom surface, and the insulation layer covers the electrodes. The heat dissipation medium is disposed on the insulation layer. The heat dissipation element includes conductive contact portions contacting the heat dissipation medium and a conductive connection portion connecting the conductive contact portions, wherein the orthographic projections of the conductive contact portions and the orthographic projections of the electrodes on the bottom surface are not overlapped by each other, and airflow channels are formed between the conductive contact portions, the conductive connection portion, and the heat dissipation medium.
Abstract:
A device is suitable for controlling a rotation-speed of a fan of a display. The device includes a temperature sensor for sensing a current temperature of the display, a memory for storing the current temperature of the display and a first and a second setting-temperature and a control module coupled to the temperature sensor and the memory and adapted to couple to the fan of the display. The control module compares the current temperature of the display with the first and the second setting-temperatures and judging the variation of the current temperature of the display to control the rotation-speed of the fan. If the control module judges out the current temperature of the display sensed by the temperature sensor rises, the control module raises the rotation-speed of the fan when the rotation-speed of the fan is lower than a maximum rotation-speed.
Abstract:
A light source module including a planar light source, a heat dissipation medium, and a heat dissipation element are disclosed. The planar light source includes a light box, electrodes, and an insulation layer. The light box has a light emitting surface and a bottom surface opposite to the light emitting surface. The electrodes and the insulation layer are disposed on the bottom surface, and the insulation layer covers the electrodes. The heat dissipation medium is disposed on the insulation layer. The heat dissipation element includes conductive contact portions contacting the heat dissipation medium and a conductive connection portion connecting the conductive contact portions, wherein the orthographic projections of the conductive contact portions and the orthographic projections of the electrodes on the bottom surface are not overlapped by each other, and airflow channels are formed between the conductive contact portions, the conductive connection portion, and the heat dissipation medium.