摘要:
The present invention in one aspect relates to a low-cost, nano-graphene based broadband optical limiter with limiting properties superior to current standards, carbon fullerenes (C60) solutions and carbon black suspensions. The broadband optical limiter includes a plurality of graphene nano-sheets, and a base material in which the plurality of graphene nano-sheets is distributed. The base material can be liquid or gel matrix.
摘要:
The present invention in one aspect relates to a low-cost, nano-graphene based broadband optical limiter with limiting properties superior to current standards, carbon fullerenes (C60) solutions and carbon black suspensions. The broadband optical limiter includes a plurality of graphene nano-sheets, and a base material in which the plurality of graphene nano-sheets is distributed. The base material can be liquid or gel matrix.
摘要:
The present invention in one aspect relates to a low-cost, nano-graphene based broadband optical limiter with limiting properties superior to current standards, carbon fullerenes (C60) solutions and carbon black suspensions. The broadband optical limiter includes a plurality of graphene nano-sheets, and a base material in which the plurality of graphene nano-sheets is distributed. The base material can be liquid or gel matrix.
摘要:
The present invention in one aspect relates to a low-cost, nano-graphene based broadband optical limiter with limiting properties superior to current standards, carbon fullerenes (C60) solutions and carbon black suspensions. The broadband optical limiter includes a plurality of graphene nano-sheets, and a base material in which the plurality of graphene nano-sheets is distributed. The base material can be liquid or gel matrix.
摘要:
An ultrasensitive dual optical method for measuring antioxidant concentration and total antioxidant capacity is provided. Using the process, the detection limit for vitamin C is as low as 7 nM. The method is based on a hybrid of single walled carbon nanotubes (SWNT) with hydrogen-peroxide. The method provides is a robust, cheap, fast, and reusable optical sensing method for antioxidant and total antioxidant capacity measurement in foods and plasma. The method can also be developed as a miniature assay for both in vitro and in vivo detection.
摘要:
An ultrasensitive dual optical method for measuring antioxidant concentration and total antioxidant capacity is provided. Using the process, the detection limit for vitamin C is as low as 7 nM. The method is based on a hybrid of single walled carbon nanotubes (SWNT) with hydrogen-peroxide. The method provides is a robust, cheap, fast, and reusable optical sensing method for antioxidant and total antioxidant capacity measurement in foods and plasma. The method can also be developed as a miniature assay for both in vitro and in vivo detection.