摘要:
A method for making an encapsulated stent includes providing a first seamless unsintered ePTFE tube, providing a second seamless sintered ePTFE tube, positioning a self-expanding stent between the first and second ePTFE tubes to form an assembly, disposing an ePTFE interlayer member between the first and second ePTFE tubes, and joining the first ePTFE tube to the second ePTFE tube through openings in a wall of the stent by applying first pressure, and then heat, to the assembly.
摘要:
A dental prophylaxis angle is provided having a body having a sleeve sized for fitting the nose of a dental handpiece, a drive part comprising a drive shaft extending into the sleeve and a drive member on the drive shaft. A driven part comprising a driven part shaft. The drive and driven parts has axes of rotation which are at substantial angles to each other. The drive part shaft is sized for gripping by a gripping mechanism in the handpiece. The drive member has a forward surface and a post extending from its forward surface. The drive part post is sized to limit end play of the drive part. Additionally, the drive part post has a shallow cavity formed in a forward surface thereof to reduce the contact area of the post with the driven part shaft, and to provide a reservoir for lubricant in the angle.
摘要:
Shape memory alloy and elastically self-expanding endoluminal support structures which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The stent and ePTFE covering are helically wound into an open cylindrical configuration with adjacent windings forming overlapping regions of ePTFE covering bonded to one another. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension such as spring steel, braided stainless steel wire, or composite materials, such as woven or braided carbon fibers.
摘要:
A method for making an encapsulated stent includes providing a first seamless unsintered ePTFE tube, providing a second seamless unsintered ePTFE tube, positioning a balloon-expandable stent between the first and second ePTFE tubes to form an assembly, disposing an ePTFE interlayer member between the first and second ePTFE tubes, and joining the first ePTFE tube to the second ePTFE tube through openings in a wall of the stent by applying first pressure, and then heat, to the assembly.
摘要:
A method for forming a self-expanding stent-graft, including coupling a shape memory member to a polymer cladding to form a polymer clad member, winding a length of the polymer clad member about a mandrel so that adjacent windings include regions of polymer cladding that overlap, heating the wound polymer clad member to join and seal the overlapping regions to one another, manipulating the stent-graft from a first diameter to a second diameter smaller than the first diameter, and loading the stent-graft into a restraining sheath, wherein the restraining sheath prevents the stent-graft from reverting to the first diameter.
摘要:
A method for making an encapsulated stent includes providing a first seamless unsintered ePTFE tube, providing a second seamless sintered ePTFE tube, positioning a self-expanding stent between the first and second ePTFE tubes to form an assembly, and joining the first ePTFE tube to the second ePTFE tube through openings in a wall of the stent by applying first pressure, and then heat, to the assembly.
摘要:
Shape memory alloy and elastically self-expanding endoluminal stents which are at least partially encapsulated in a substantially monolithic expanded polytetrafluorethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension.
摘要:
Shape memory alloy and elastically self-expanding endoluminal stents which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene (“ePTFE”) covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension.
摘要:
A method for forming a self-expanding stent-graft, including coupling a shape memory member to a polymer cladding to form a polymer clad member, disposing a length of the polymer clad member in an overlapping helical manner about a longitudinal axis, joining and sealing adjacent overlapping regions of the polymer clad member to form a stent-graft, manipulating the stent-graft from a first diameter to a second diameter smaller than the first diameter, and loading the stent-graft into a restraining sheath at the second diameter, the restraining sheath preventing expansion of the stent-graft from the second diameter to the first diameter.
摘要:
A method for making a radially expandable stent-graft, including positioning a radially expandable stent member concentrically over a first polymeric member, locating a second polymeric member concentrically over the stent member and first polymeric member, and joining the first polymeric member to the second polymeric member through interstices of the stent member at selective locations to form slip planes between the first and second polymeric members. The slip planes accommodate movement of the stent between the polymeric members to facilitate compression of the stent graft to a low profile.