Abstract:
One aspect provides a capacitor feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.
Abstract:
The present subject matter includes an apparatus including a capacitor stack, including at least one substantially planar anode layer arranged in stacked alignment adjacent at least one substantially planar cathode layer, with at least one separator layer disposed therebetween. In this embodiment, the present subject matter includes at least one conformed film at least partially enveloping the capacitor stack in a bound state and adapted to electrically isolate the capacitor stack.
Abstract:
A flat capacitor includes a case having a feedthrough hole, a capacitor stack located within the case, a coupling member having a base surface directly attached to the capacitor stack and having a portion extending through the feedthrough hole, the coupling member having a mounting hole, a feedthrough conductor having a portion mounted within the mounting hole, and a sealing member adjacent the feedthrough hole and the feedthrough conductor for sealing the feedthrough hole. Other aspects of the invention include various implantable medical devices, such as pacemakers, defibrillators, and cardioverters, incorporating one or more features of the exemplary feedthrough assembly.
Abstract:
The present subject matter includes an apparatus including a capacitor stack, including at least one substantially planar anode layer arranged in stacked alignment adjacent at least one substantially planar cathode layer, with at least one separator layer disposed therebetween. In this embodiment, the present subject matter includes at least one conformed film at least partially enveloping the capacitor stack in a bound state and adapted to electrically isolate the capacitor stack.
Abstract:
The present subject matter includes an apparatus including a capacitor stack, including at least one substantially planar anode layer arranged in stacked alignment adjacent at least one substantially planar cathode layer, with at least one separator layer disposed therebetween. In this embodiment, the present subject matter includes at least one conformed film at least partially enveloping the capacitor stack in a bound state and adapted to electrically isolate the capacitor stack.
Abstract:
One aspect provides a capacitor having a first stack of capacitive elements a second stack of capacitive elements, wherein the first and second stacks are enclosed in separate compartments of a capacitor case that electrically isolate the electrolytes of each stack from one another.
Abstract:
A flat capacitor includes a case having a feedthrough hole, a capacitor stack located within the case, a coupling member having a base surface directly attached to the capacitor stack and having a portion extending through the feedthrough hole, the coupling member having a mounting hole, a feedthrough conductor having a portion mounted within the mounting hole, and a sealing member adjacent the feedthrough hole and the feedthrough conductor for sealing the feedthrough hole. Other aspects of the invention include various implantable medical devices, such as pacemakers, defibrillators, and cardioverters, incorporating one or more features of the exemplary feedthrough assembly.
Abstract:
A flat capacitor includes a case having a feedthrough hole, a capacitor stack located within the case, a coupling member having a base surface directly attached to the capacitor stack and having a portion extending through the feedthrough hole, the coupling member having a mounting hole, a feedthrough conductor having a portion mounted within the mounting hole, and a sealing member adjacent the feedthrough hole and the feedthrough conductor for sealing the feedthrough hole. Other aspects of the invention include various implantable medical devices, such as pacemakers, defibrillators, and cardioverters, incorporating one or more features of the exemplary feedthrough assembly.
Abstract:
One aspect provides a capacitor feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.
Abstract:
One embodiment includes a capacitor having a first anode stack having a first number of anode foils, a second anode stack having a second number of anode foils, where the first number of anode foils is different than the second number of anode foils. Another aspect provides a capacitor having a case having a curved interior surface, and first, second, and third capacitor modules that confront the curved interior surface of the case. One aspect provides a capacitor having one or more anodes and a cathode structure comprising a plurality of integrally connected cathode plates, the cathode structure having a serpentine shape, interweaving under and over each of the one or more anodes. One aspect provides a feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough. One aspect provides a capacitor having a first stack of capacitive elements a second stack of capacitive elements, wherein the first and second stacks are enclosed in separate compartments of a capacitor case that electrically isolate the electrolytes of each stack from one another. One aspect provides a capacitor case including a portion having opposing interior and exterior surfaces, with the portion having a hole; and a semi-permeable membrane adjacent the hole to regulate passage of fluids through the hole.