摘要:
T-DNA tagging with a promoterless β-glucuronidase (GUS) gene generated transgenic Nicotiana tabacum plants that expressed GUS activity either only in developing seed coats, or constitutively. Cloning and deletion analysis of the GUS fusion revealed that the promoter responsible for seed coat specificity was located in the plant DNA proximal to the GUS gene. Analysis of the region demonstrated that the seed coat-specificity of GUS expression in this transgenic plant resulted from T-DNA insertion next to a cryptic promoter. This promoter is useful in controlling the expression of genes to the developing seed coat in plant seeds. Similarly, cloning and characterization of the cryptic constitutive promoter revealed the occurrence of several cryptic regulatory regions. These regions include promoter, negative regulatory elements, transcriptional enhancers, core promoter regions, and translational enhancers and other regulatory elements.
摘要:
A novel DNA regulatory element that confers microspore-specific gene expression has been discovered, isolated, and characterized. The microspore-specific regulatory element can be used to control the expression of a foreign gene that disrupts the function of microspores. Thus, the control of pollen production can be achieved by using the microspore-specific regulatory element to produce male-sterile plants. Various methods can be used to restore male fertility in the F1 generation of such male-sterile plants. In addition, the microspore-specific regulatory element can be used to confer resistance to viral and insect pests.
摘要:
A novel DNA regulatory element that confers microspore-specific gene expression has been discovered, isolated, and characterized. The microspore-specific regulatory element can be used to control the expression of a foreign gene that disrupts the function of microspores. Thus, the control of pollen production can be achieved by using the microspore-specific regulatory element to produce male-sterile plants. Various methods can be used to restore male fertility in the F1 generation of such male-sterile plants. In addition, the microspore-specific regulatory element can be used to confer resistance to viral and insect pests.
摘要:
The present invention is directed to a nucleic acid comprising a nucleotide sequence that encodes a protein that imparts a dull luster to a seed coat when expressed within seed-coat tissues and to transgenic seeds, plant cells and plants expressing the protein.
摘要:
The present invention provides for a gene obtained during the induction of microspore embryogenisis. The protein encoded by this gene renders plant cells embryongenic, and increases the regenerative capacity of the plant cell. Also disclosed is the regulatory region of this gene and its use for directing the expression of a gene of interest within a suitable host cell.
摘要:
The present invention is directed to an isolated genomic sequence that is differentially expressed within seed-coat tissues. This invention also relates to a promoter obtained from the genomic sequence that is differentially expressed in seed-coat tissues, and the use of this promoter for directing seed-coat specific expression of a gene of interest within transformed plant cells or plants. A method for modifying the luster of a seed coat is also provided.
摘要:
T-DNA tagging with a promoterless .beta.-glucuronidase (GUS) gene generated a transgenic Nicotiana tabacum plant that expressed GUS activity constitutively. The gene fusion has been cloned and sequenced. It has been re-inserted into N. tabacum by Agrobacterium-mediated transformation. The N. tabacum DNA upstream from the GUS gene was approximately 2 kb in length and showed no homology to known sequences. This DNA, which contains a constitutive promoter, is useful in controlling the expression of exogenous genes in transgenic plants of diverse plant species.
摘要:
This invention is directed to a regulatory region obtained from a wheat aleurone gene LtpW1. This regulatory region, truncated derivatives, mutations, or deletions of this regulatory region, can be used to express heterologous genes of interest within aleurone cells of a plant. Furthermore, this invention is directed to a truncated LtpW1 regulatory region that exhibits constitutive activity with both monocot and dicot plants. This invention is also directed to vectors comprising these regulatory regions operatively linked with a heterologous gene of interest, as well as plant cell cultures and transgenic plants comprising these vectors. A method for the preparation of a plant using the regulatory regions of this invention are also disclosed.
摘要:
An nucleotide sequence and that exhibits regulatory element activity is disclosed. The nucleotide sequence may be defined by SEQ ID NO:22, a nucleotide sequence that hybridizes to the nucleic acid sequence of SEQ ID NO:22, or a compliment thereof. Also disclosed is a chimeric construct comprising the nucleotide sequence operatively linked with a coding region of interest. A method of expressing a coding region of interest within a plant by introducing the chimeric construct described above, into the plant, and expressing the coding region of interest is also provided. Also disclosed are plants, seed, or plant cells comprising the chimeric construct as defined above.
摘要翻译:公开了核苷酸序列并表现出调节元件活性。 核苷酸序列可以由SEQ ID NO:22定义,与SEQ ID NO:22的核酸序列杂交的核苷酸序列或其补体。 还公开了包含与感兴趣的编码区可操作地连接的核苷酸序列的嵌合构建体。 还提供了通过将上述嵌合构建体引入植物并表达感兴趣的编码区而在植物内表达感兴趣的编码区的方法。 还公开了包含如上定义的嵌合构建体的植物,种子或植物细胞。
摘要:
T-DNA tagging with a promoterless .beta.-glucuronidase (GUS) gene generated a transgenic Nicotiana tabacum plant that expressed GUS activity only in developing seed coats. Cloning and deletion analysis of the GUS fusion revealed that the promoter responsible for seed coat specificity was located in the plant DNA proximal to the GUS gene. Analysis of the region demonstrated that the seed coat-specificity of GUS expression in this transgenic plant resulted from T-DNA insertion next to a cryptic promoter. This promotor is useful in controlling the expression of genes to the developing seed coat in plant seeds.