摘要:
An illumination system for a microlithographic stepper has a light source that emits light of selected wavelength(s) along an optical path toward a photomask. An aperture mask is positioned in the path of the illumination light and between the light source and the photomask. The aperture mask has a dithered pattern of pixels. The intensity of the pattern controls the illumination of the photomask. The masking aperture pattern defines one or more zones of illumination. Each zone has elements that are patterned in accordance with a selected wavelength of incident light to diffract the incident light into an illumination pattern for illuminating a photomask. Each of the elements is constructed with a matrix of pixels. In the preferred embodiment the array of pixels is 8×8. The number of elements is generally greater than 3×3.
摘要:
A masking aperture for a photomask illumination system provides controlled on-axis and off-axis illumination. The masking aperture has a dithered pattern of pixels. The intensity of the pattern controls the illumination of the photomask. The masking aperture pattern defines one or more zones of illumination. Zones comprise elements that are patterned in accordance with a selected wavelength of incident light to diffract the incident light into an illumination pattern for illuminating a photomask. Each of the elements is constructed with a matrix of pixels. In the preferred embodiment the array of pixels is 8×8. The number of elements is generally greater than 3×3.
摘要:
A imaging tool for use with a mask with features oriented along at least an x-axis or a y-axis where the x-axis extends in directions substantially perpendicular to the directions of the y-axis. The tool has a condenser lens with a condenser plate which is located in a condenser lens pupil plane and which has a condenser aperture with four-sides. The sides of the condenser aperture are oriented in substantially the same direction as either the x-axis or the y-axis. The condenser lens is positioned to place at least a portion of any illumination on at least a portion of the mask.
摘要:
A imaging tool for use with a mask with features oriented along at least an x-axis or a y-axis where the x-axis extends in directions substantially perpendicular to the directions of the y-axis. The tool has a condenser lens and an objective lens. The condenser lens has a condenser aperture with four-sides and four comers that are located in a condenser lens pupil plane. The sides of the condenser aperture are oriented in substantially the same direction as either the x-axis or the y-axis. The condenser lens is positioned to place at least a portion of any illumination on the mask and then into an objective lens pupil plane of the objective lens. At least one of the comers of the condenser aperture in the condenser plate may have a substantially rounded shape. Additionally, the mask may have at least one artifact added to at least one comer of the features for optical proximity correction.
摘要:
Aberrations in an optical system can be detected and measured using a method comprised of a test target in the object plane of a projection system and imaging a photoresist film with the system. The test target comprises at least one open figure which comprises a multiple component array of phase zones, where the multiple zones are arranged within the open figure so that their response to lens aberration is interrelated and the zones respond uniquely to specific aberrations depending on their location within the figure. The method detects aberration types including coma, spherical, astigmatism, and three-point through the exposure of a photoresist material placed in the image plane of the system and the evaluation of these images.
摘要:
A mask for use on a layer of imaging material which is located on at least a portion of one surface of a substrate in a lithography process in accordance with one embodiment of the present invention includes a layer of a masking material which has an optical density of at least 4.0 for wavelengths at or below about 180 nm and a thickness of less than about 1000 angstroms. Materials, such as tungsten and amorphous silicon, can be used for the mask.
摘要:
An attenuated phase shift mask for use in a lithography process includes a masking film made of at least one material with at least a silicon component which provides a transmission above about 0.5 percent and a phase shift of about a 180° for radiation at a wavelength at or below about 160 nm.
摘要:
An alignment apparatus (28) is provided for use with a supply column (16) including an outer shell (22), a mount (12) configured to couple the outer shell (22) to a ceiling (14), and a plurality of supply lines (24) positioned within the outer shell (22). The supply lines (24) are configured to be coupled to at least one of an electrical supply and a gas supply. The alignment apparatus (28) includes a body member (30) configured to be positioned on the outer shell (22) of the supply column (16), and a plurality of ports (34, 36) formed in the body member (30). The ports (34, 36) are configured to support the supply lines (24) in a predetermined pattern.
摘要:
An image enhancement apparatus and method are disclosed. The apparatus consists of a spatial frequency filter where zero order mask diffraction information is reduced in an alternative pupil plane of the objective lens, specifically just beyond the mask plane. By introducing an angular specific transmission filter into this Fraunhofer diffraction field of the mask, user accessibility is introduced, allowing for a practical approach to frequency filtering. This frequency filtering is accomplished using a specifically designed interference filter coated over a transparent substrate. Alternatively, filtering can also be accomplished in a complimentary region near the wafer image plane or in both near-mask and near-wafer planes.
摘要:
A mask for use on a layer of imaging material which is located on at least a portion of one surface of a substrate in a lithography process in accordance with one embodiment of the present invention includes a layer of a masking material which has an optical density of at least 4.0 for wavelengths at or below about 180 nm and a thickness of less than about 1000 angstroms. Materials, such as tungsten and amorphous silicon, can be used for the mask.