摘要:
Various exemplary embodiments provide protocell nanostructures and methods for constructing and using the protocell nanostructures. In one embodiment, the protocell nanostructures can include a core-shell structure including a porous particle core surrounded by a shell of lipid bilayer(s). The protocell can be internalized in a bioactive cell. Various cargo components, for example, drugs, can be loaded in and released from the porous particle core of the protocell(s) and then delivered within the bioactive cell.
摘要:
Various exemplary embodiments provide protocell nanostructures and methods for constructing and using the protocell nanostructures. In one embodiment, the protocell nanostructures can include a core-shell structure including a porous particle core surrounded by a shell of lipid bilayer(s). The protocell can be internalized in a bioactive cell. Various cargo components, for example, drugs, can be loaded in and released from the porous particle core of the protocell(s) and then delivered within the bioactive cell.
摘要:
Various exemplary embodiments provide protocell nanostructures and methods for constructing and using the protocell nanostructures. In one embodiment, the protocell nanostructures can include a core-shell structure including a porous particle core surrounded by a shell of lipid bilayer(s). The protocell can be internalized in a bioactive cell. Various cargo components, for example, drugs, can be loaded in and released from the porous particle core of the protocell(s) and then delivered within the bioactive cell.
摘要:
The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referred to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.