摘要:
MPEG compressed data is decompressed in a computer system by sharing computational decompression tasks between the computer system host microprocessor, the graphics accelerator, and a dedicated MPEG processor in order to make best use of resources in the computer system. Thus the dedicated MPEG processor is of minimum capability and hence advantageously minimum cost. The host microprocessor is used to decompress the MPEG upper data layers. The more powerful the host microprocessor, the more upper data layers it decompresses. The remainder of the decompression (lower data layers) is performed by the MPEG dedicated processor and/or the graphics accelerator.
摘要:
A digital multiplier is configured from a number of identical circuit "slices" with interconnecting signals arranged such that the need for large wiring channels is eliminated. The resulting multiplier, a hybrid of tree and array multipliers, has many of the space saving characteristics of array multipliers, with many of the speed advantages of tree multipliers. Various parameters of the design are flexible and may be changed by the designer to make speed versus size tradeoffs. The multiplier may be either pipelined or non-pipelined.
摘要:
MPEG compressed video data is decompressed in a computer system by sharing computational decompression tasks between the computer system host microprocessor, the graphics accelerator, and a dedicated MPEG processor (video decoder engine) in order to make best use of resources in the computer system. Thus the dedicated MPEG processor is of minimum capability and hence advantageously minimum cost. The host microprocessor is used to decompress the MPEG upper data layers. The more powerful the host microprocessor, the more upper data layers it decompresses. The remainder of the decompression (lower data layers) is performed by the MPEG dedicated processor and/or the graphics accelerator. The video decoder engine is a fast hardwired processor. It has a graceful degradation capability to allow dropping of occasional video frames without displaying any part of a dropped video frame. The video decoder engine has a three stage pipeline structure to minimize circuitry and speed up operation.
摘要:
MPEG compressed data is decompressed in a computer system by sharing computational decompression tasks between the computer system host microprocessor, the graphics accelerator, and a dedicated MPEG processor in order to make best use of resources in the computer system. Thus the dedicated MPEG processor is of minimum capability and hence advantageously minimum cost. The host microprocessor is used to decompress the MPEG upper data layers. The more powerful the host microprocessor, the more upper data layers it decompresses. The remainder of the decompression (lower data layers) is performed by the MPEG dedicated processor and/or the graphics accelerator.
摘要:
Affine image transformations are performed in an interleaved manner, whereby coordinate transformations and intensity calculations are alternately performed incrementally on small portions of an image. The pixels are processed in rows such that after coordinates of a first pixel are determined for reference, each pixel in a row, and then pixels in vertically adjacent rows, are processed relative to the coordinates of the previously processed adjacent pixels. After coordinate transformation to produce affine translation, rotation, skew and/or scaling, intermediate metapixels are vertically split and shifted to eliminate holes and overlaps. Intensity values of output metapixels are calculated as being proportional to the sum of scaled portions of the intermediate metapixels which cover the output pixels respectively.
摘要:
The frame reconstruction (FR) portion of an MPEG decompression circuit includes a horizontal interpolation element, a vertical interpolation element, and a selector (post processing) element. The horizontal and vertical interpolation elements are each digital filters averaging respectively two horizontal and two vertical adjacent pixels in an MPEG pixel block. Logic is included for constructing B, I, and P-type MPEG pictures. Also included is an error/warning handling mechanism.
摘要:
Decompression of MPEG compressed audio data is performed in a computer system by the host processor in the computer system providing preprocessing data decompression and a dedicated audio decoder engine (which is a digital signal processor) performing the filtering and windowing of the host preprocessed data. The audio decoder engine includes a data path, instruction set, registers and internal program and data memory. The host performs a large portion of the audio decompression, leaving the windowing and filtering to the audio decoder engine. Thus the computationally intensive portions of the decompression are performed more efficiently. Coefficient storage in the audio decompression engine is optimized by taking advantage of the symmetries inherent in the coefficient data, both for the filter coefficients and the windowing coefficients. Double buffer input and output buffers speed the data flow between the host processor and the audio decoder engine. The double buffers allow a continuous flow of data from the host processor to the audio decoder engine.
摘要:
A novel technique for improving the accuracy of seed values for iterative convergent computations such as square-root taking and division by providing optional dynamic range expansion as a part of the seed selection process is described. The technique, by improving seed accuracy, reduces the number of iterations required for convergence. This is accomplished with less hardware than would be required to accomplish the same result with a large ROM.
摘要:
Affine image transformations are performed in an interleaved manner, whereby coordinate transformations and intensity calculations are alternately performed incrementally on small portions of an image. The pixels are processed in rows such that after coordinates of a first pixel are determined for reference, each pixel in a row, and then pixels in vertically adjacent rows, are processed relative to the coordinates of the previously processed adjacent pixels. After coordinate transformation to produce affine translation, rotation, skew, and/or scaling, intermediate metapixels are vertically split and shifted to eliminate holes and overlaps. Intensity values of output metapixels are calculated as being proportional to the sum of scaled portions of the intermediate metapixels which cover the output pixels respectively.
摘要:
Disclosed is a digital multiplier-accumulator circuit utilizing a carry save adder tree, pipeline register and carry select adder. Also disclosed is a digital multiplier circuit including a carry save adder tree and a pipeline register.