Abstract:
In some embodiments, a method of monitoring a resin-producing polymerization reaction in a fluid bed reactor system to generate reaction parameter data in on-line fashion, determining an indicator of at least one of entropy and complexity (for example, Kolmogorov or Shannon entropy) of each of at least two subsets of the reaction parameter data, and optionally also determining from at least one value of the indicator (for example, from a time series of Kolmogorov or Shannon entropy values) an indication of at least one of degree of resin stickiness, an approach to or imminence of resin stickiness, and an approach to or imminence of an unsafe or undesired reactor operating condition (e.g., that can result in sheeting or chunking). Optionally also, the reaction is controlled in response to at least one value of the indicator, for example, in an effort to prevent the occurrence of sheeting or another discontinuity event or to maintain the reactor in a stable, non-sticking condition.
Abstract:
The current invention provides a method and apparatus, which uses symbol sequence techniques, temporal irreversibility, and/or cluster analysis to monitor the operating state of individual burner flames on a appropriate time scale. Both the method and apparatus of the present invention may be used optimize the performance of burner flames.
Abstract:
The current invention provides a method and apparatus, which uses symbol sequence techniques and/or temporal irreversibility derived from chaos theory to monitor the operating state of individual burner flames on a appropriate time scale. Both the method and apparatus of the present invention may be used optimize the performance of burner flames.
Abstract:
Methods for cyclone boiler flame diagnostics and control, including methods for monitoring the operating state of a cyclone furnace using linear and nonlinear signal analysis techniques, including temporal irreversibility and symbol sequence. Adjustments may be made in the air flow distribution to optimize performance. Signals for the main flame and lighter scanners are relatively independent, thereby allowing for independent control of the primary air flow to the burner and secondary air flow to the barrel.
Abstract:
The current invention provides a method and apparatus, which uses symbol sequence techniques and/or temporal irreversibility derived from chaos theory to monitor the operating state of individual burner flames on a appropriate time scale. Both the method and apparatus of the present invention may be used optimize the performance of burner flames.