Abstract:
A method and apparatus of correcting flow information generated by flow measurement apparatus, such as a Coriolis flowmeter. The disclosed method and apparatus corrects flow information generated during low flow and zero flow rates by blocking the application of spurious flow signals from the output of the flowmeter.
Abstract:
The present invention relates to a system, a method, and a computer program product for detecting a process disturbance from entrained gas or particulates within a fluid flowing in a vibrating flow device (5). In one embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a void fraction and a void fraction threshold value. In another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value, a comparison between a void fraction and a void fraction threshold value, and a comparison between a measured mass flow rate and a nominal mass flow rate threshold value. In yet another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a measured pick-off amplitude and a pick-off amplitude threshold value.
Abstract:
A vibratory flow meter (5) for determining a derived fluid temperature Tf-derive of a flow material is provided according to the invention. The vibratory flow meter (5) includes a flow meter assembly (10) including one or more flow conduits (103), a meter temperature sensor (204) configured to measure a meter temperature Tm, an ambient temperature sensor (208) for measuring an ambient temperature Ta, and meter electronics (20) coupled to the meter temperature sensor (204) and to the ambient temperature sensor (208). The meter electronics (20) is configured to receive the meter temperature Tm and the ambient temperature Ta and determine the derived fluid temperature Tf-deriv of the flow material in the vibratory flow meter (5) using the meter temperature Tm and the ambient temperature Ta.
Abstract:
A single tube Coriolis flowmeter of enhanced flow sensitivity in which material flow induces Coriolis deflections in a flow tube and Coriolis-like deflections in a balance bar vibrationally coupled to the flow tube. Both the Coriolis deflections and the Coriolis-like deflections have a phase shift determined by material flow and are used co-adjuvantly to derive material flow information. The flowmeter achieves a constant flow sensitivity over a range of changes in material density by 1) varying the flow sensitivity in a first direction under control of the ratio between the drive mode vibration amplitude of the flow tube and the balance bar and 2) varying the flow sensitivity in an opposite direction under control of the ratio between the Coriolis deflection amplitude of the flow tube and the Coriolis-like deflection of the balance bar. The drive mode vibration amplitude ratio varies with changes in drive mode frequency caused by changes in material density. The amplitude ratio of the Coriolis defection and the Coriolis-like deflection changes with changes in the magnitude of the separation of the drive mode frequency and the second bending mode frequency to the balance bar density which, in turn, is caused by changes in material density.
Abstract:
The present invention relates to a system, a method, and a computer program product for detecting a process disturbance from entrained gas or particulates within a fluid flowing in a vibrating flow device (5). In one embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a void fraction and a void fraction threshold value. In another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value, a comparison between a void fraction and a void fraction threshold value, and a comparison between a measured mass flow rate and a nominal mass flow rate threshold value. In yet another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a measured pick-off amplitude and a pick-off amplitude threshold value.
Abstract:
A single input, multiple output flow meter (200) is provided. The flow meter (200) includes an intake conduit (202) and a flow divider (203). The flow meter (200) further includes a first flow sensor element (204) coupled to the flow divider (203), including a first output conduit (206), and is configured to generate a first flow signal. The flow meter (200) further includes at least a second flow sensor element (205) coupled to the flow divider (203), including a second output conduit (207), and is configured to generate a second flow signal. The input flow can be metered through the first output conduit (206) by the first flow sensor element (204), can be metered through the second output conduit (207) by the second flow sensor element (205), or can be simultaneously metered through both the first output conduit (206) by the first flow sensor element (204) and through the second output conduit (207) by the second flow sensor element (205).
Abstract:
The present invention relates to a system, a method, and a computer program product for detecting a process disturbance from entrained gas or particulates within a fluid flowing in a vibrating flow device (5). In one embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a void fraction and a void fraction threshold value. In another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value, a comparison between a void fraction and a void fraction threshold value, and a comparison between a measured mass flow rate and a nominal mass flow rate threshold value. In yet another embodiment, the system, the method and the computer program may involve a comparison between a measured drive gain and a drive gain threshold value and a comparison between a measured pick-off amplitude and a pick-off amplitude threshold value.
Abstract:
A system for calculating a flow rate of a flow meter using multiple modes is provided according to an embodiment of the invention. The system for calculating a flow rate of a flow meter using multiple modes comprises a means for calibrating the flow meter for a number of desired modes. The system for calculating a flow rate of a flow meter using multiple modes includes a means for determining a density of a material flowing through the flow meter associated with each mode. The system for calculating a flow rate of a flow meter using multiple modes further includes a means for determining the flow rate effect on density for each desired mode. The system for calculating a flow rate of a flow meter using multiple modes a means for calculating a flow rate based on the density and flow rate effect on density values for each desired mode.
Abstract:
A single input, multiple output flow meter (200) is provided. The flow meter (200) includes an intake conduit (202) and a flow divider (203). The flow meter (200) further includes a first flow sensor element (204) coupled to the flow divider (203), including a first output conduit (206), and is configured to generate a first flow signal. The flow meter (200) further includes at least a second flow sensor element (205) coupled to the flow divider (203), including a second output conduit (207), and is configured to generate a second flow signal. The input flow can be metered through the first output conduit (206) by the first flow sensor element (204), can be metered through the second output conduit (207) by the second flow sensor element (205), or can be simultaneously metered through both the first output conduit (206) by the first flow sensor element (204) and through the second output conduit (207) by the second flow sensor element (205).
Abstract:
A meter electronics (20) for a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a vibrational response and a processing system (203). The processing system (203) receives the vibrational response, vibrates at least one flowtube (130) of the vibratory flow meter (5) and generates a first tube period τ?m1#191 for a first flow material m1, vibrates the at least one flowtube (130) and generates a second tube period τ?m2#191 for a second flow material m2, and determines one or more of a stiffness coefficient C1 or a mass coefficient C2 from the first tube period τ?m1#191, a first density ρ?m1#191, the second tube period τ?m2#191, and a second density ρ?m2#191.