Abstract:
A control circuit of a multi-mode buck-boost switching regulator and a method thereof are provided. The control circuit imposes ON/OFF timing sequences on switches according to the relationship between two controlling triangle waves and the load fluctuation. In each working cycle of each mode of the regulator, at most two switches perform switching operations. The control circuit is simple to design, which only includes simple digital elements, such as comparators, logic gates etc., instead of complicated analog circuits.
Abstract:
A control circuit of a multi-mode buck-boost switching regulator and a method thereof are provided. The control circuit imposes ON/OFF timing sequences on switches according to the relationship between two controlling triangle waves and the load fluctuation. In each working cycle of each mode of the regulator, at most two switches perform switching operations. The control circuit is simple to design, which only includes simple digital elements, such as comparators, logic gates etc., instead of complicated analog circuits.
Abstract:
A method for forming a contact or via plug is described. A dielectric layer and a patterned photoresist layer are sequentially formed on a substrate. A portion of the exposed dielectric layer is removed to form a first opening. A first liner is formed on the surfaces of the photoresist layer. An anisotropic etching process is conducted using the first liner and the photoresist layer as a mask to remove a portion of the dielectric layer under the first opening to form a second opening incorporating the first opening. A second liner is formed on the photoresist layer covering the first liner. Then, the above etching step is repeated to form a third opening that incorporates the second opening and exposes the substrate. The second liner, the first liner and the photoresist layer are removed, and then a conductive material is filled into the third opening to form a contact or via plug.