Abstract:
A Quadrature Amplitude Modulation (QAM) receiver is provided to demodulate received symbols into a constellation, and comprises a radio frequency (RF) module, an analog to digital converter (ADC), an auto gain controller (AGC), a digital modulator, a distribution analyzer and a system controller. The RF module receives and demodulates radio signals into received symbols. The ADC coupled to the RF module generates digital signals from the received symbols. The AGC normalizes signal amplitudes in the RF module. The digital demodulator performs synchronization and equalization to decode the digital signals, whereby a constellation is generated. The distribution analyzer coupled to the output of the ADC and the digital demodulator provides a decision grid to analyze the constellation. The system controller is coupled to the distribution analyzer, adjusting the AGC and digital demodulator according to the constellation analysis.
Abstract:
An apparatus performs burst noise detection and then reduce the interference of the burst noise by controlling an operation of an adaptive apparatus, such as an equalizer. It includes: an adaptive apparatus having multiple coefficients, processing incoming signals according to these coefficients, and employing an error estimator to update the coefficients; a burst noise detector used to detect a burst noise; and an ON/OFF switching unit used to stop the error estimator from updating the coefficients when the burst noise is detected.
Abstract:
An error propagation reduction method is provided, for an equalizer comprising a forward equalizer and a decision feedback equalizer. First, an input signal is equalized to generate an equalized signal. The equalized signal is quantized to generate a quantized signal. The equalized signal is error decoded to generate a decoded signal. A value is calculated by linear combining the equalized signal, the quantized signal, and the decoded signal with weighting coefficients adaptable according to the channel quality. The value is used to set a register whose associated decision feedback equalizer coefficient has maximal magnitude. An apparatus performing the error propagation reduction is also provided.
Abstract:
Apparatuses and methods for scanning channels in a television signal receiver. The apparatuses generally include a first acquisition circuit, a second acquisition circuit, and a controller. The first acquisition circuit is generally configured to determine, during a first time period, whether a selected radio frequency channel has a first format and to produce a first acquisition indicator in response thereto. The second acquisition circuit is generally configured to determine, during a second time period overlapping the first time period, whether the selected radio frequency channel has a second format and to produce a second acquisition indicator in response thereto. The controller is generally configured to scan a plurality of radio frequency channels by operating the first acquisition circuit and the second acquisition circuit for each one of the plurality of radio frequency channels. Embodiments advantageously provides for faster scanning and acquisition of television signals in a mixed-format (e.g., analog and digital) television distribution environment.
Abstract:
Methods and television receivers for rejecting a co-channel interference signal from a first digital signal. A first digital signal is delayed to output a first delayed signal. In this method, an synthesized interference signal is generated based on the first digital signal. The synthesized interference signal is subtracted from the first delayed digital signal and produces a second digital signal. The second digital signal is equalized to output an equalized signal based on a first decision signal. The equalized signal is decoded to output the first decision signal. The equalized signal is delayed to output a second delayed signal. A compensation signal is generated based on the first decision signal. The compensation signal is subtracted from the delayed second signal and produces a fifth digital signal serving as an output signal.
Abstract:
An equalization circuit and an equalization method implemented thereby are provided. A received symbol is received to generate a equalizer output. In the equalization circuit, an equalizer performs equalization to the received symbol based on a SNR value of the equalizer output. A SNR estimator coupled to the output of equalizer receives the equalizer output to measure the SNR value. The equalizer equalizes the received symbol by the LMS algorithm in which coefficients are recursively updated by a step size, and the step size is adjusted based on the SNR value.
Abstract:
Methods and television receivers for rejecting a co-channel interference signal from a first digital signal. A first digital signal is delayed to output a first delayed signal. In this method, an synthesized interference signal is generated based on the first digital signal. The synthesized interference signal is subtracted from the first delayed digital signal and produces a second digital signal. The second digital signal is equalized to output an equalized signal based on a first decision signal. The equalized signal is decoded to output the first decision signal. The equalized signal is delayed to output a second delayed signal. A compensation signal is generated based on the first decision signal. The compensation signal is subtracted from the delayed second signal and produces a fifth digital signal serving as an output signal.
Abstract:
Apparatuses and methods for scanning channels in a television signal receiver. The apparatuses generally include a first acquisition circuit, a second acquisition circuit, and a controller. The first acquisition circuit is generally configured to determine, during a first time period, whether a selected radio frequency channel has a first format and to produce a first acquisition indicator in response thereto. The second acquisition circuit is generally configured to determine, during a second time period overlapping the first time period, whether the selected radio frequency channel has a second format and to produce a second acquisition indicator in response thereto. The controller is generally configured to scan a plurality of radio frequency channels by operating the first acquisition circuit and the second acquisition circuit for each one of the plurality of radio frequency channels. Embodiments advantageously provides for faster scanning and acquisition of television signals in a mixed-format (e.g., analog and digital) television distribution environment.
Abstract:
Methods and system removing co-channel interference from a digital signal. In this method, the digital signal interfered by an interference signal is received, wherein the interference signal comprises consecutive sections, each of which contains N symbols. An average signal is generated by calculating an average over the received digital signal at periodic time instants (n−k*N), wherein N is a constant, n denotes the present time instant and k is a non-negative integer. A first estimated interference signal is generated by filtering the average signal, and the first estimated interference signal is subtracted from the received digital signal and output a first signal.
Abstract:
Methods and television receivers for rejecting a co-channel interference signal from a first digital signal. A first digital signal is delayed to output a first delayed signal. In this method, an synthesized interference signal is generated based on the first digital signal. The synthesized interference signal is subtracted from the first delayed digital signal and produces a second digital signal. The second digital signal is equalized to output an equalized signal based on a first decision signal. The equalized signal is decoded to output the first decision signal. The equalized signal is delayed to output a second delayed signal. A compensation signal is generated based on the first decision signal. The compensation signal is subtracted from the delayed second signal and produces a fifth digital signal serving as an output signal.