Abstract:
An electronic device, an adapter and a receptacle are provided. The electronic device includes a card body, a plurality of first and second terminals, and at least one stub. The card body has a front edge, a first surface and a second surface opposite to the first surface. The first terminals are between the first terminals and the front edge. The stub is disposed on the second surface and near the front edge. The adapter includes a body and a plurality of elastic terminals. The body has an accommodating portion for accommodating an electronic device. One ends of the elastic terminals are fixed to the body. When the electronic device is accommodated at the accommodating portion, a plurality of flat terminals of the electronic device are outside of the accommodating portion, and another ends of the elastic terminals are against the flat terminals correspondingly.
Abstract:
In one embodiment of an architecture of multi-power mode serial interface, the architecture comprises two I/O ports, and a driver and receiver circuit. In the driver and receiver circuit, at least a multi-mode driver generates a group of signals with different currents or voltages to drive the two I/O ports, according to control signals of different transmission modes. A multi-mode terminator circuit provides different terminal impedances, according to control signals of different transmission modes. At least a receiver receives signals from the two I/O ports and shunt from the multi-mode terminator circuit. Wherein, the different transmission modes at least include a USB compatible mode.
Abstract:
A card structure includes a first element and a second element. The first element includes a first peripheral portion and a plurality of first contact points exposed by the first peripheral portion. The second element includes a second peripheral portion and a plurality of second contact points corresponding to the first contact points of the first element and exposed by the second peripheral portion. When the first and second elements are joined with each other, the first peripheral portion of the first element and the second peripheral portion of the second element are adjacent to each other, to juxtapose the first contact points of the first element and the second contact points of the second element to each other. The juxtaposed first and second contact points of the first and second elements are coupled to each other by a welding portion.
Abstract:
A demosaicking method and apparatus for color filter array interpolation in digital image acquisition systems is provided. The method includes a data-training phase and a data-practice phase. In the data-training phase of this invention, a huge volume of image samples are received for statistical analysis and compared with their corresponding full-color images. The optimal samples are then recorded in a database. In the data-practice phase of this invention, the images of color filter array are reconstructed. The present invention not only significantly improves the image quality but also reduces undue hardware cost. Furthermore, it has an advantage of ease of hardware implementation. All the color relationships of neighboring pixels are recorded in a database for statistical analysis. The database is not limited to only one set. It is also pretty flexible, and can be adjusted or updated depending on desired applications.
Abstract:
The present invention relates to a method for preparing 186/188Re-labeled human serum albumin (HSA) microspheres by 186/188Re(I)-tricarbonyl ion. This radioactive particle can be subjected to radioembolization for liver tumor. In this method, 186/188Re(I)-tricarbonyl ion (186/188Re(OH2)3(CO)3)+) are employed as a precursor for directly labeling HSA microspheres with 186/188Re at appropriate temperature.
Abstract:
Exemplary embodiments of optical USB thin card is disclosed, which includes a substrate, having a space formed inside its packaging layer; a seat, disposed at a position on the substrate while forming an opening on the substrate; a plurality of first contact elements, each being disposed on the seat to be used for connecting electrically with an external device; a plurality of second contact elements, each being disposed on the seat to be used for connecting electrically with an external device; and bidirectional optical transmission module, having a plurality of optical fiber, disposed inside an accommodation space formed by the enclosure of the seat and the substrate; a micro control unit, for processing signals, data and commands of the optical USB thin card.
Abstract:
A configurable processing apparatus includes a plurality of processing units, at least an instruction synchronization control circuit, and at least a configuration memory. Each processing apparatus has a stall-output signal generating circuit to output a stall-output signal, wherein the stall-output signal indicates that an unexpected stall is occurred in the processing unit. The processing unit has a stall-in signal, and an external circuit of the processing unit can control whether the processing unit is stalled according to the stall-in signal. The instruction synchronization control circuit generates the stall-in signals to the processing units in response to a content stored in the configuration memory and the stall-output signals of the processing units, so as to determine operation modes and instruction synchronization of the processing units.
Abstract:
An image sensor having an output of an integral image is provided. The image sensor includes a pixel circuit, a line accumulator, and a volume accumulator. The pixel circuit includes a plurality of pixels for capturing pixel values of the pixels. The line accumulator is used for accumulating the pixel values of the pixels from a first pixel to a target pixel in a target pixel line of the image so as to obtain an accumulated line pixel value. The volume accumulator is used for adding the accumulated line pixel value output by the line accumulator to an integral pixel value of the pixel corresponding to the target pixel in a previous pixel line of the target pixel line, and using an adding result as the integral pixel value of the target pixel, so as to output the integral pixel value of the target pixel to form an integral image.
Abstract:
An electronic device, an adapter and a receptacle are provided. The electronic device includes a card body, a plurality of first and second terminals, and at least one stub. The card body has a front edge, a first surface and a second surface opposite to the first surface. The first terminals are between the first terminals and the front edge. The stub is disposed on the second surface and near the front edge. The adapter includes a body and a plurality of elastic terminals. The body has an accommodating portion for accommodating an electronic device. One ends of the elastic terminals are fixed to the body. When the electronic device is accommodated at the accommodating portion, a plurality of flat terminals of the electronic device are outside of the accommodating portion, and another ends of the elastic terminals are against the flat terminals correspondingly.
Abstract:
A card structure includes a first element and a second element. The first element includes a first peripheral portion and a plurality of first contact points exposed by the first peripheral portion. The second element includes a second peripheral portion and a plurality of second contact points corresponding to the first contact points of the first element and exposed by the second peripheral portion. When the first and second elements are joined with each other, the first peripheral portion of the first element and the second peripheral portion of the second element are adjacent to each other, to juxtapose the first contact points of the first element and the second contact points of the second element to each other. The juxtaposed first and second contact points of the first and second elements are coupled to each other by a welding portion.