Abstract:
A substrate carrier is used for carrying a plurality of back electrode substrates into a furnace. Each back electrode substrate has a precursor layer formed thereon. The furnace is used for providing a process gas to react with the precursor layer, so as to form a photoelectric transducing layer on each back electrode substrate. The substrate carrier includes a heat-resistant metal frame and a first protective layer. The heat-resistant metal frame has a plurality of slots for supporting the plurality of back electrode substrates. The first protective layer is formed on the heat-resistant metal frame for preventing a chemical reaction of the heat-resistant metal frame with the process gas.
Abstract:
A network resource allocation system and method of the same are provided according to the present invention. The system and method are applicable to a wireless mesh network, the method including: programming traffic of connections between routers; exchanging data between neighboring routers, thereby enabling the routers to perform dispersive network resource allocation according to the exchanged data; checking a local time window and a global time window for expiration by the router; and, under the condition of local performance deterioration or local traffic variation, activating a local routing adjustment mechanism by the router, wherein, if global performance deterioration currently exists, then activating a global optimization mechanism by a central controller, and, if not, then resetting the global time window. Accordingly, the present invention is capable of perceiving the traffic status of each connection between routers, thereby efficiently directing traffic to various channels and wireless transceivers.
Abstract:
A see-through solar battery module includes a transparent substrate, and a plurality of block metal electrodes formed on the transparent substrate as an array. Each block metal electrode does not contact the adjacent block metal electrode along a first direction. The see-through solar battery module further includes a plurality of block photoelectric transducing layers. Each block photoelectric transducing layer is formed on the block metal electrode and the transparent substrate along the first direction and formed on the block metal electrode and the transparent substrate along a second direction as an array, and each block photoelectric transducing layer does not contact the adjacent block photoelectric transducing layer along the first direction. The see-through solar battery module further includes a plurality of striped transparent electrodes. Each striped transparent electrode is formed on the block photoelectric transducing layer, the transparent substrate, and the block metal electrode along the second direction.
Abstract:
A method for manufacturing a see-through solar battery module includes disposing a first mask above a transparent substrate, forming a plurality of metal electrode layers alternately arranged on the transparent substrate, disposing a second mask above the transparent substrate, forming a photoelectric transducing layer on each metal electrode layer by the second mask, removing a part of each photoelectric transducing layer along a first direction to expose a part of each metal electrode layer, forming a transparent electrode layer on each photoelectric transducing layer and each metal electrode layer, and removing a part of each transparent electrode layer and a part of each photoelectric transducing layer to expose a part of each metal electrode layer so as to make the plurality of metal electrode layers and the transparent electrode layer in series connection along a second direction respectively.
Abstract:
A method for manufacturing a see-through solar battery module includes disposing a first mask above a transparent substrate, forming a plurality of metal electrode layers alternately arranged on the transparent substrate, disposing a second mask above the transparent substrate, forming a photoelectric transducing layer on each metal electrode layer by the second mask, removing a part of each photoelectric transducing layer along a first direction to expose a part of each metal electrode layer, forming a transparent electrode layer on each photoelectric transducing layer and each metal electrode layer, and removing a part of each transparent electrode layer and a part of each photoelectric transducing layer to expose a part of each metal electrode layer so as to make the plurality of metal electrode layers and the transparent electrode layer in series connection along a second direction respectively.
Abstract:
A pulse frequency modulation oscillating circuit includes a reference voltage generator for generating a first reference voltage and a second reference voltage, a first comparison circuit for comparing a state signal with the first reference voltage, a second comparison circuit for comparing the state signal with the second reference voltage, an output circuit for outputting a pulse frequency modulation signal according to an under-voltage signal, and signals outputted from the first comparison circuit and from the second comparison circuit, a mode generation circuit for generating the state signal, and a mode decision circuit for outputting inverse signals of the signals outputted from the first comparison circuit or signals outputted from the output circuit to the mode generation circuit according to the pulse frequency modulation signal, the under-voltage signal, and the signals outputted from the first comparison circuit and from the second comparison circuit.
Abstract:
A number of techniques, which may be used together, provide distributed coordination of multiple stations so that concurrent transmissions and increased throughput are achieved on a shared radio medium. Each of the techniques provides a separate innovation that can be used alone or in combination with one or more of the other techniques.
Abstract:
A distributed media access system and method. The method includes making each of a plurality nodes in a P2P network designate at least one nearest neighbors as a first node candidate and perform at least one random walk to obtain a second node candidate according to the peer list; calculating user preferences of the request node and user preferences of the first and second node candidates according to the first and second node candidates and the preference parameters corresponding to the first and second node candidates so as to obtain a plurality of similarity values; selecting the more similar candidate as buddies of user of the node according to the calculated similarity values; and establishing a buddy list according to the buddies of user and storing the buddy list such that the P2P network can quickly find buddies of the node through the buddy list.
Abstract:
A see-through solar battery module includes a transparent substrate, a plurality of striped metal electrodes formed on the transparent substrate along a first direction, and a plurality of striped photoelectric transducing layers respectively formed on the corresponding striped metal electrode and the transparent substrate along the first direction. Two lateral sides of each striped photoelectric transducing layer do not contact the transparent substrate. The see-through solar battery module further includes a plurality of striped transparent electrodes respectively formed on the transparent substrate, the corresponding striped metal electrode, and the corresponding striped photoelectric transducing layer along the first direction, so that the plurality of striped metal electrodes and the plurality of striped transparent electrodes are in series connection along a second direction.
Abstract:
A network resource allocation system and method of the same are provided according to the present invention. The system and method are applicable to a wireless mesh network, the method including: programming traffic of connections between routers; exchanging data between neighboring routers, thereby enabling the routers to perform dispersive network resource allocation according to the exchanged data; checking a local time window and a global time window for expiration by the router; and, under the condition of local performance deterioration or local traffic variation, activating a local routing adjustment mechanism by the router, wherein, if global performance deterioration currently exists, then activating a global optimization mechanism by a central controller, and, if not, then resetting the global time window. Accordingly, the present invention is capable of perceiving the traffic status of each connection between routers, thereby efficiently directing traffic to various channels and wireless transceivers.