Abstract:
A wall structure (32, 42, 68, 70, 80) with layers (A, B, C, D, E) of non-random voids (26A, 26B, 28B, 30B) that interconnect to form discretely defined tortuous passages between an interior (21) and an exterior surface (23) of the wall for transpiration cooling of the wall. A coolant flow (38) through the wall may be metered by restrictions in coolant outlets (31) and/or within the passages to minimize the coolant requirement. Pockets (44) may be formed on the exterior surface of the wall for thermal Insulation (46). The layers may be formed by lamination, additive manufacturing, or casting. Layer geometries include alternating layers (A, B, C) with different overlapping void patterns (42), 3-D lattice structures (70), and offset waffle structures (80).
Abstract:
A support ring for a row of vanes in an engine section of a gas turbine engine includes an annular main body portion for providing structural support for a row of vanes in the engine section, an aft hook, a forward wall, and a strong back plate. The aft hook extends from an aft side of the main body portion and is coupled to an outer engine casing for structurally supporting the support ring in the engine section. The forward wall extends generally radially outwardly from a forward side of the main body portion. The strong back plate spans between the forward wall and the aft hook and effects a reduction in dynamic displacement between the forward wall and the aft hook during operation of the engine.
Abstract:
A film cooling structure formed in a component wall of a turbine engine and a method of making the film cooling structure. The film cooling structure includes a plurality of individual diffusion sections formed in the wall, each diffusions section including a single cooling passage for directing cooling air toward a protuberance of a wall defining the diffusion section. The film cooling structure may be formed with a masking template including apertures defining shapes of a plurality of to-be-formed diffusion sections in the wall. A masking material can be applied to the wall into the apertures in the masking template so as to block outlets of cooling passages exposed through the apertures. The masking template can be removed and a material may be applied on the outer surface of the wall such that the material defines the diffusion sections once the masking material is removed.
Abstract:
A casting core (200) for a twisted gas turbine engine blade, including: an airfoil portion (202) having: an airfoil base end (208), an airfoil tip end (210), a concave side exterior surface (212), a convex side exterior surface (214), a leading edge (204), and a trailing edge (206). The airfoil portion is twisted in a radial direction from the airfoil base end to the airfoil tip end. The airfoil portion includes a first void (220) between the concave side exterior surface and the convex side exterior surface and extending radially to define the shape of a rib of an airfoil to be cast around the core. A first leading edge surface and a first trailing edge surface of the void are twisted from the airfoil base end to the airfoil tip end.
Abstract:
An investment casting method for a cast ceramic core (110), including an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50) and an integral shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
Abstract:
A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.
Abstract:
A serpentine cooling circuit (AFT) in a turbine airfoil (34A) starting from a radial feed channel (C1), and progressing axially (65) in alternating tangential directions through interconnected channels (C1, C2, C3) formed between partitions (T1, T2, J1). At least one of the partitions (T1, T2) has a T-shaped transverse section, with a base portion (67) extending from a suction or pressure side wall (64, 62) of the airfoil, and a crossing portion (68, 69) parallel to, and not directly attached to, the opposite pressure or suction side wall (62, 64). Each crossing portion bounds a near-wall passage (N1, N2) adjacent to the opposite pressure or suction side wall (62, 64). Each near-wall passage may have a smaller flow aperture area than one, or each, of two adjacent connected channels (C1, C2, C3). The serpentine circuit (AFT) may follow a forward cooling circuit (FWD) in the airfoil (34A).
Abstract:
A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In the impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.
Abstract:
A method of casting a component (42) having convoluted interior passageways (44). A desired three dimensional structure corresponding to a later-formed metal alloy component is formed by stacking a plurality of sheets (18, 20) of a fugitive material. The sheets contain void areas (22) corresponding to a desired interior passageway in the metal alloy component. A ceramic slurry material is cast into the three dimensional structure to form either a ceramic core (34) or a complete ceramic casting vessel (38). If just a ceramic core is formed, a wax pattern is formed around the ceramic core and an exterior ceramic shell (38) is formed around the wax pattern by a dipping process prior to the removal of the fugitive material and wax. An alloy component having the desired interior passageway is cast into the casting vessel after the fugitive material is removed.
Abstract:
A gas turbine engine, including: a plurality of blades (60) assembled into an annular row of blades and partly defining a hot gas path (26) and a cooling fluid path (24), wherein the cooling fluid path extends from a rotor cavity (22) to the hot gas path; an angel wing assembly (99) disposed on a side (74) of a base (76) of the row of blades; and pumping features (130) distributed about the angel wing assembly configured to impart, at a narrowest gap (42) of the cooling fluid path, motion to a flow of cooling fluid flowing there through. The plurality of pumping features, the angel wing assembly, and the base of the row of blades are effective to produce a helical motion to the flow of cooling fluid as it enters the hot gas path.