Abstract:
A print mechanism and method for sensing the print medium are disclosed. The print mechanism includes a print head assembly, actuator, and controller. The print head assembly includes a position detector and a marking device. The position detector includes an imaging device for forming an image of a portion of an edge of a print medium. The actuator moves the print head assembly relative to the print medium in a predetermined direction. The controller determines a location for the edge of the print medium from the formed image. In one embodiment, the controller also determines a brightness value for the print medium from the image and causes the amount of ink deposited by the marking device to be altered. In another embodiment, the controller determines if the print medium is correctly aligned in the print.
Abstract:
An encoder having a first array of n photodetectors and a code strip imaging system where n>2 is disclosed. Each photodetector is characterized by a width d. The code strip imaging system generates an image of a code strip on the first array. The image includes alternating dark and light stripes of width D. The dark stripes have a lower luminosity than the white stripes. The widths of the photodetectors and stripes in the image are chosen such that nd=(n−1)D, the code strip image moving in a first direction with respect to the first array, wherein the distances d and D are measured in a direction parallel to the first direction. Detector circuits convert the outputs from the photodetectors to logic signals that define a state for the encoder that repetitively cycles through 2n values when the code strip image moves a distance of 2D.
Abstract:
An RF switching circuit that incorporates a film bulk acoustic resonator (FBAR) device and one or more capacitors that are used to vary the capacitance of the FBAR device to change the frequency range that is blocked by the FBAR device. When the RF switching circuit is in a first switching state, a first set of RF signals in a first frequency range is blocked by the RF switching circuit while RF signals of other frequencies are passed by the RF switching circuit. When the RF switching circuit is in a second switching state, a second set of RF signals in a second frequency range is blocked by the RF switching circuit while RF signals of other frequencies are passed by the RF switching circuit.
Abstract:
A new method of silane abatement is achieved. The novel silane abatement system comprises a water-filled chamber within an outer chamber. An air intake is located in one upper portion of said outer chamber and an exhaust output is located in another upper portion of the outer chamber. A silane gas intake pipe runs into the outer chamber and has its output under water in the water-filled chamber. A drain is connected through a valve at a bottom portion of the water-filled chamber. Many safety features are built into the wet abatement system, including temperature and water level sensors, water sprinklers, and means for shutting off air supply, exhaust, and silane intake. Waste silane gas is bubbled into a water-filled chamber. The waste silane gas is reacted with oxygen in water in the water-filled chamber whereby SiO2 precipitates are formed and wherein the SiO2 precipitates settle to a bottom surface of the water-filled chamber. The SiO2 precipitates are drained out of the water-filled chamber to complete the abatement process.