Abstract:
A white organic light-emitting diode includes two symmetric emission layers and a middle emission layer. The two symmetric emission layers emit a first color light with approximately the same frequency components. The middle emission layer is located between the two symmetric emission layers. The middle emission layer emits a second color light with frequency components different from main frequency components of the first color light. When the voltage applied to the organic light-emitting diode changes and leads to a decrease of luminescent intensity of one of the symmetric emission layers, the other symmetric emission layer automatically increases the luminescent intensity to compensate for the reduced light intensity.
Abstract:
A cellular microarray is disclosed, which has a substrate, multiple first conductive lines, multiple second conductive lines, and multiple PIREs arranged on the surface of the substrate in an array. Each PIRE includes multiple first ring-shaped electrodes, and multiple second ring-shaped electrodes. The first ring-shaped electrodes, and the second ring-shaped electrodes are located on the surface of the substrate alternately in each PIRE. Moreover, the outermost ring-shaped electrodes of any two adjacent feather-shaped electrodes are different. The disclosed cellular microarray can adhere the cells rapidly and uniformly, increase the output of manufacturing, and reduce the cost for manufacturing and application.
Abstract:
A cellular microarray is disclosed, which has a substrate, multiple first conductive lines, multiple second conductive lines, and multiple PIREs arranged on the surface of the substrate in an array. Each PIRE includes multiple first ring-shaped electrodes, and multiple second ring-shaped electrodes. The first ring-shaped electrodes, and the second ring-shaped electrodes are located on the surface of the substrate alternately in each PIRE. Moreover, the outermost ring-shaped electrodes of any two adjacent feather-shaped electrodes are different. The disclosed cellular microarray can adhere the cells rapidly and uniformly, increase the output of manufacturing, and reduce the cost for manufacturing and application.
Abstract:
An integrated electrophoresis device includes a passage, a receiving opening, a removal opening, and a set of electric field generators. The passage is provided with gel and buffer solution. The receiving opening is disposed in the passage. The removal opening is also disposed in the passage. The electric field generators generate an electric field in the passage so that a plurality of charged substances in the passage migrates from the receiving opening to the removal opening.
Abstract:
A white organic light-emitting diode includes two symmetric emission layers and a middle emission layer. The two symmetric emission layers emit a first color light with approximately the same frequency components. The middle emission layer is located between the two symmetric emission layers. The middle emission layer emits a second color light with frequency components different from main frequency components of the first color light. When the voltage applied to the organic light-emitting diode changes and leads to a decrease of luminescent intensity of one of the symmetric emission layers, the other symmetric emission layer automatically increases the luminescent intensity to compensate for the reduced light intensity.
Abstract:
An organic electro-luminescent device. The device comprises two electrodes and an organic electro-luminescent structure interposed therebetween. The electrodes are disposed on a substrate, one serving as an anode and the other as a cathode. The organic electro-luminescent structure comprises a fluorescent emissive layer, a phosphorescent emissive layer and a nondoped organic material layer interposed therebetween. The phosphorescent emissive layer has a host material. The nondoped organic material layer has a highest occupied molecular orbital (HOMO) energy level no higher than that of the host material in the phosphorescent emissive layer.
Abstract:
An organic light-emitting device is provided, which comprises an anode, a cathode and a light-emitting layer between them. An organic light-emitting material having the structure of Formulas I or II is doped in the light-emitting layer. In the Formulas I and II, R1˜R9 are H, F, CF3, NO2, an alkyl group of 1 to 6 carbon atoms, an aryl group or any combinations thereof; and M is a transition metal atom.
Abstract:
An organic electro-luminescent device. The device comprises two electrodes and an organic electro-luminescent structure interposed therebetween. The electrodes are disposed on a substrate, one serving as an anode and the other as a cathode. The organic electro-luminescent structure comprises a fluorescent emissive layer, a phosphorescent emissive layer and a nondoped organic material layer interposed therebetween. The phosphorescent emissive layer has a host material. The nondoped organic material layer has a highest occupied molecular orbital (HOMO) energy level no higher than that of the host material in the phosphorescent emissive layer.
Abstract:
A phosphorescent OLED uses a phosphorescent dopant in the emissive layer, the dopant includes a metal complex containing a plurality of moieties linking to a transition metal ion. One or more of the moieties contain a ligand with a C—SP3 carbon center. The transition metal ion can be an iridium ion. The C—SP3 carbon is linked to a chalcogen atom in an ion form, a nitrogen-containing heterocylic ring and two functional groups, wherein each of the functional groups is selected from aryl, alkyl and heteroaryl. The tetrahedral structure of this carbon center hinders close packing and intermolecular interactions and, therefore, renders the transport of holes in the light-emitting device more efficient. With such chemical structure and property, the self-quenching characteristics of the dopant in high doping concentration can be effectively reduced.
Abstract:
An organic light-emitting device is provided, which comprises an anode, a cathode and a light-emitting layer between them. An organic light-emitting material having the structure of Formulas I or II is doped in the light-emitting layer. In the Formulas I and II, R1˜R9 are H, F, CF3, NO2, an alkyl group of 1 to 6 carbon atoms, an aryl group or any combinations thereof; and M is a transition metal atom.