Abstract:
A method for out-of-plane displacement detection is disclosed. The out-of-plane displacement is detected by analyzing all the fringe density indexes calculated using the frequency-domain information extracted from a series of interference images of the sample vibrating at different frequencies. The present invention further discloses a method and an apparatus for resonant frequency identification by detecting the peak value of all the fringe indexes calculated at different scanning frequencies. With the identified resonant frequency, the full-field vibratory surface profile of the sample in various resonance modes can be reconstructed.
Abstract:
An apparatus for measuring a two-dimensional displacement is disclosed and includes a laser light source, a collimator lens, a beam splitter, a plurality of staggered conjugate optic lens and a plurality of interference optical dephasing modules. The laser light source provides a laser light incident on the collimator lens to generate collimated laser beams. Each of the collimated laser beams are incident on the beam splitter to be separated into two incident beams and incident on a two-dimensional diffraction unit to generate a plurality of first diffracted beams and a plurality of second-order diffracted beams. The staggered conjugate optic lens are used to reflect the first diffracted beams so that the first diffracted beams return to the two-dimensional diffraction unit to generate a plurality of second diffracted beams where the second diffracted beams and the second-order diffracted beams generated as a result of the first diffraction of the beams stagger.
Abstract:
The present invention relates to a method for image calibration and an apparatus for image acquiring. In the method for image calibration, the image formation position for an image acquiring unit of the apparatus is calibrated according to the relative location of the image acquiring unit to a objective lens of the apparatus, wherein the relative location is determined by calculating the focus index of the image acquired by the image acquiring unit so that a clear and sharp interferogram can be obtained for three dimensional surface profile measuring. In addition, it is possible to obtain a clear and sharp image without any interference fringe outside the coherent range by adjusting the image formation position, which is capable of being utilized for two dimensional defect detection and dimension measurement.
Abstract:
The present invention relates to a method for image calibration and an apparatus for image acquiring. In the method for image calibration, the image formation position for an image acquiring unit of the apparatus is calibrated according to the relative location of the image acquiring unit to a objective lens of the apparatus, wherein the relative location is determined by calculating the focus index of the image acquired by the image acquiring unit so that a clear and sharp interferogram can be obtained for three dimensional surface profile measuring. In addition, it is possible to obtain a clear and sharp image without any interference fringe outside the coherent range by adjusting the image formation position, which is capable of being utilized for two dimensional defect detection and dimension measurement.
Abstract:
A method for improving the measurement capability of multi-parameter inspection systems includes performing a measuring procedure to acquire a measured signature of a sample, calculating weighting factors representing a correlation between structural parameters of the sample by using a weighting algorithm, transforming the weighting factors into a sampling function by using a transforming rule, updating the measured signature to form an updated measured signature and generating a plurality of updated nominal signatures according to the sampling function, and comparing the updated measured signature and the updated nominal signatures to determine the structural parameters of the sample.
Abstract:
A method and apparatus for identifying dynamic characteristics of a vibratory object is provided in the present invention, in which a series of dynamic interference images of the vibratory object is acquired through a frequency sweeping procedure and a two-dimensional image scanning procedure. Thereafter, the acquired images are processed for obtaining the corresponding differential fringe density index by signal processing technique of band-pass filtering method so as to further identify the dynamic characteristics of the vibratory object.
Abstract:
A method for out-of-plane displacement detection is disclosed. The out-of-plane displacement is detected by analyzing all the fringe density indexes calculated using the frequency-domain information extracted from a series of interference images of the sample vibrating at different frequencies. The present invention further discloses a method and an apparatus for resonant frequency identification by detecting the peak value of all the fringe indexes calculated at different scanning frequencies. With the identified resonant frequency, the full-field vibratory surface profile of the sample in various resonance modes can be reconstructed.
Abstract:
A method for out-of-plane displacement detection is disclosed. The out-of-plane displacement is detected by analyzing all the fringe density indexes calculated using the frequency-domain information extracted from a series of interference images of the sample vibrating at different frequencies. The present invention further discloses a method and an apparatus for resonant frequency identification by detecting the peak value of all the fringe indexes calculated at different scanning frequencies. With the identified resonant frequency, the full-field vibratory surface profile of the sample in various resonance modes can be reconstructed.
Abstract:
A method for improving the measurement capability of multi-parameter inspection systems includes performing a measuring procedure to acquire a measured signature of a sample, calculating weighting factors representing a correlation between structural parameters of the sample by using a weighting algorithm, transforming the weighting factors into a sampling function by using a transforming rule, updating the measured signature to form an updated measured signature and generating a plurality of updated nominal signatures according to the sampling function, and comparing the updated measured signature and the updated nominal signatures to determine the structural parameters of the sample.
Abstract:
The present invention relates to a signal analysis method for vibratory interferometry to identify the vibratory characteristics of an object under test. A vibratory stroboscopic interferometric signal of an object under vibration is obtained. The vibratory stroboscopic interferometric signal is analyzed with a deconvolution operation to obtain a reformed vibratory stroboscopic interferometric signal.