Abstract:
There is described a decodable indicia reading terminal which in one embodiment can capture and process a certain (e.g., a first) and a subsequent (e.g., a second) frame of image data, wherein the certain and the subsequent frames have different imaging attributes. In one embodiment the attributes between certain and subsequent frames are differentiated in that the certain frame represents light incident on pixels of a first image sensor and the subsequent frame of image data represents light incident on pixels of a second image sensor spaced apart from the first image sensor. Additionally, or in the alternative, the attributes between certain and subsequent frames can be differentiated in that the first frame represents light incident on an image sensor under a first illumination profile and the subsequent frame represents light incident on pixels of an image sensor under a second illumination profile. In one embodiment imaging attributes of a frame subject to decoding are maintained constant for each frame subject to processing during a time that a trigger signal remains active. In one embodiment the certain and subsequent frames can be processed to yield partial decoding results and the partial decoding results can be combined to form a complete decoding result.
Abstract:
An indicia reader system including: an indicia reader to read information bearing indicia (IBI); an actuator for activating the indicia reader; a first device for wirelessly sending audio data; a headphone for wear by the operator, the headphone having a second device for accepting the audio data and at least one audio feedback device provided therein for utilizing the audio data to provide audio feedback to the operator.
Abstract:
There is described a focusing apparatus having a deformable membrane that at least partially defines a cavity and an optical fluid disposed in the cavity. An actuator assembly can be provided for imparting a force to the deformable membrane. In one embodiment, the actuator assembly can include a piezoelectric actuator.
Abstract:
An indicia reader system including: an indicia reader to read information bearing indicia (IBI); an actuator for activating the indicia reader; a first device for wirelessly sending audio data; a headphone for wear by the operator, the headphone having a second device for accepting the audio data and at least one audio feedback device provided therein for utilizing the audio data to provide audio feedback to the operator.
Abstract:
There is set forth herein in one embodiment an indicia reading terminal having an imaging assembly operative so that a manner in which a decodable indicia representation is searched for is responsive to one or more of a terminal to target distance and a projected light pattern representation.
Abstract:
Embodiments of the present invention comprise an indicia reading terminal including a focus element that extends the range of focus distances at which the indicia reading terminal can decode decodable indicia. In one embodiment, the focus element comprises a variable form element and a variable position element, the combination of which causes an image distance that can change in accordance with a separation distance between these two elements. The focus element can comprise an actuator, e.g., a piezoelectric actuator, which can be coupled to the variable position element in a manner that can cause the variable position element to deform the variable form element, and in one example, the deformation changes the focal length of the variable form element.
Abstract:
A portable data terminal including an elongated housing and a vertical grip. The housing has a battery well that extends traverse to a longitudinal axis of the housing. A battery pack has a longitudinal axis that, when seated in the battery well, extends traverse to a longitudinal axis of the housing, the battery pack having an integrated latch that engages a recess in the battery well.
Abstract:
There is described an indicia reading terminal having an image sensor array including a plurality of pixels, a first optical assembly for focusing imaging light rays onto a first set of pixels of an image sensor array and a second optical assembly for focusing imaging light rays onto a second set of pixels of the image sensor array. The indicia reading terminal can be adapted to process image data corresponding to pixels of the image sensor array for attempting to decode a decodable indicia.
Abstract:
An optical reader can include an image sensor. In one embodiment an optical reader can be configured to have different operating modes, the different operating modes optimizing the reader for reading different indicia. In another embodiment an optical reader can comprise a multiple color emitting light source. In another embodiment an optical reader can be provided in a specialized form factor including an enlarged head portion and an elongated body portion extending from the head portion.
Abstract:
There is described a decodable indicia reading terminal which in one embodiment can capture and process a certain (e.g., a first) and a subsequent (e.g., a second) frame of image data, wherein the certain and the subsequent frames have different imaging attributes. In one embodiment the attributes between certain and subsequent frames are differentiated in that the certain frame represents light incident on pixels of a first image sensor and the subsequent frame of image data represents light incident on pixels of a second image sensor spaced apart from the first image sensor. Additionally, or in the alternative, the attributes between certain and subsequent frames can be differentiated in that the first frame represents light incident on an image sensor under a first illumination profile and the subsequent frame represents light incident on pixels of an image sensor under a second illumination profile. In one embodiment imaging attributes of a frame subject to decoding are maintained constant for each frame subject to processing during a time that a trigger signal remains active. In one embodiment the certain and subsequent frames can be processed to yield partial decoding results and the partial decoding results can be combined to form a complete decoding result.