摘要:
A color gamut mapping method for multimedia equipment is disclosed. This method performs color gamut mapping on a video signal received by the multimedia equipment and gives an output, wherein the video signal is in a first color gamut while display light of the multimedia equipment is in a second color gamut. The color gamut mapping method for multimedia equipment comprises the steps of: converting the received video signal into a luminance signal and a chrominance signal, and calculating a two-dimensional plane according to the luminance signal and the chrominance signal, wherein the two-dimensional plane intersects the first color gamut to obtain a first region and intersects the second color gamut to obtain a second region; calculating location of a to-be-mapped point corresponding to the video signal in the first region according to the luminance signal and the chrominance signal of the video signal, and calculating a mapping point in the second region by making calculations on the to-be-mapped point to output a mapping point signal.
摘要:
A color gamut mapping method for multimedia equipment is disclosed. This method performs color gamut mapping on a video signal received by the multimedia equipment and gives an output, wherein the video signal is in a first color color gamut while display light of the multimedia equipment is in a second color gamut. The color gamut mapping method for multimedia equipment comprises the steps of: converting the received video signal into a luminance signal and a chrominance signal, and calculating a two-dimensional plane according to the luminance signal and the chrominance signal, wherein the two-dimensional plane intersects the first color gamut to obtain a first region and intersects the second color gamut to obtain a second region; calculating location of a to-be-mapped point corresponding to the video signal in the first region according to the luminance signal and the chrominance signal of the video signal, and calculating a mapping point in the second region by making calculations on the to-be-mapped point to output a mapping point signal.
摘要:
A light source module for stereoscopic display includes multi-primary color lasers which output the light with the same polarization direction. Respective lasers are divided into two groups according to the wavelengths of the output light. A light combiner is provided in the output light path of each laser group and is used for combining the output light of all lasers in the group into one output light path. The light source module further includes a polarization conversion rotary member, and the polarization direction of the two output light is periodically and alternately rotated by 90 degree by self-rotation of the polarization conversion rotary member. An imaging device for stereoscopic display includes the light source module for stereoscopic display, the light combiner and a first optical imaging modulator and a second optical imaging modulator. A stereoscopic display system includes the imaging device for stereoscopic display and a projection lens sub-system.
摘要:
A light source module for stereoscopic display includes multi-primary color lasers which output the light with the same polarization direction. Respective lasers are divided into two groups according to the wavelengths of the output light. A light combiner is provided in the output light path of each laser group and is used for combining the output light of all lasers in the group into one output light path. The light source module further includes a polarization conversion rotary member, and the polarization direction of the two output light is periodically and alternately rotated by 90 degree by self-rotation of the polarization conversion rotary member. An imaging device for stereoscopic display includes the light source module for stereoscopic display, the light combiner and a first optical imaging modulator and a second optical imaging modulator. A stereoscopic display system includes the imaging device for stereoscopic display and a projection lens sub-system.