Abstract:
A digital control system with a predetermined configuration automatically senses the connection to a network of a digital device that is not included in the predetermined configuration. The digital device is assigned temporary address information and placed in a temporary state, called a standby state, in which the digital device supplies information to the digital control system allowing a user to access the digital device including access of device information and configuration parameters. Using the device information and configuration parameters, a user selectively commissions the digital device by assigning a physical device tag, a device address, and a device identification, and installing a control strategy to the digital device, thereby placing the digital device in an operational state in communication with the digital control system. In the standby state, a user interrogates to determine the type of device that is attached, determines the role of the device in the context of the digital control system, assigns a physical device tag that assigns the determined role to the device, and verifies connection of the device to the network. Also in the standby state, the user initiates other applications applied to the device, including calibration of the device and configuring the device within the overall control scheme of the digital control system.
Abstract:
A process control routine may include a first internal function block for executing a control operation based on an input signal and an information conduit communicatively connected to the first internal function block. The information conduit may have an output adapted to provide the input signal to the first internal function block. The process control routine may further include an external function block communicatively connected to the information conduit and adapted to generate the input signal such that the output signal is directly provided to the information conduit prior to the execution of the control operation.
Abstract:
A digital control system automatically senses when a new controller is attached to a network and determines the number and types of I/O Ports that are attached to the new controller. The digital control system formats and displays the I/O Port information upon request by a user. The digital control system program also includes an automatic configuration program that responds to sensing of a new controller by automatically configuring the input/output (I/O) subsystem. The user adds a new controller without setting any physical switches or nodes. A user optionally supplies configuration information for a device into a database, prior to connection of a device. Upon connection of the device, the device is automatically sensed and configured using the database configuration information, without setting of physical switches or node address information on the devices.
Abstract:
A digital control system with a predetermined configuration automatically senses the connection to a network of a digital device that is not included in the predetermined configuration. The digital device is assigned temporary address information and placed in a temporary state, called a standby state, in which the digital device supplies information to the digital control system allowing a user to access the digital device including access of device information and configuration parameters. Using the device information and configuration parameters, a user selectively commissions the digital device by assigning a physical device tag, a device address, and a device identification, and installing a control strategy to the digital device, thereby placing the digital device in an operational state in communication with the digital control system. In the standby state, a user interrogates to determine the type of device that is attached, determines the role of the device in the context of the digital control system, assigns a physical device tag that assigns the determined role to the device, and verifies connection of the device to the network. Also in the standby state, the user initiates other applications applied to the device, including calibration of the device and configuring the device within the overall control scheme of the digital control system.
Abstract:
A process controller that is communicatively coupled to an external field device via a communication network uses a shadow function block disposed within a process controller to enable implementation of a control routine that uses both an internal function block disposed within the process controller and an external function block disposed within the external field device. The shadow function block includes a communication port that communicates with the external function block via the communication network to thereby receive data pertaining to the external function block, a memory that stores the received data according to a configuration protocol of the internal function block and an output that provides the stored external function block data to the internal function block according to the configuration protocol of the internal function block. The communication port of the interface function block may include an output that sends data generated by the controller or the internal function block to the external function block using the communication protocol associated with the external function block.