Abstract:
A field device that communicates in accordance with Ethernet signaling is provided. The field device is powered by virtue of its Ethernet connection. The field device preferably includes a feature board that includes an Ethernet network connection and a field device connection. The feature board is configured to power the field device with power received through the Ethernet network connection. The feature board interacts with the field device using a process industry standard communication protocol. A method of operating a field device is also provided.
Abstract:
Systems and methods for simulating operations of a Fieldbus system (FS). The FS (200) includes a Fieldbus interface module (FIM) coupled to field devices. The methods involve creating a simulation computer model (SCM) of the FS, generating simulation data records (SDRs), and running simulation software (SS). The SS is installed on a computer system (242), FIM (232, 234), or embedded device (222, 226). The SS simulates at least one operation of the FS. The SS uses at least a portion of the SCM and at least one of the SDRs. The SCM includes functional blocks and interconnections between the functional blocks. The functional blocks represent the FIM and/or field devices. The SDRs include data defining the SCM, a control strategy of the FS, and communication links between the FIM and field devices. The SDRs also include data defining the operating characteristics of the FIM and field devices.
Abstract:
Devices in a process control system communicate by data messages over a communication medium segment. Each device includes a communication controller that automatically time stamps events associated with received and transmitted messages.
Abstract:
A process control routine may include a first internal function block for executing a control operation based on an input signal and an information conduit communicatively connected to the first internal function block. The information conduit may have an output adapted to provide the input signal to the first internal function block. The process control routine may further include an external function block communicatively connected to the information conduit and adapted to generate the input signal such that the output signal is directly provided to the information conduit prior to the execution of the control operation.
Abstract:
A field bus distribution unit (VE) designed for use in process automation technology involving several field devices. The unit is equipped with a microcontroller μC, which is connected to the field bus (FB) and transmits device-specific information of the field devices that are connected to a field bus distribution unit (VE).
Abstract:
A virtual fieldbus device module is a software or firmware module that enables an otherwise ordinary fieldbus device to become a complex fieldbus device, capable of registering and maintaining multiple fieldbus network addresses for one or more “virtual” fieldbus devices. Each virtual fieldbus device has one or more sensor inputs and appears to the fieldbus network as an individual physical fieldbus device, despite the complex fieldbus device only having one physical connection to the fieldbus network. The virtual fieldbus device module may be incorporated into a device's firmware or may be included in a memory plug-in capable of being removed. The communication packet processing of a complex fieldbus device running the virtual fieldbus device module includes receiving a communication packet over the fieldbus network, determining whether the address associated with the packet matches any of the addresses registered by the complex fieldbus device, and processing any packets that match.
Abstract:
A new and improved control system architecture with a single server interface for application software that eliminates manual intervention by providing online, immediate access to information needed for plant/enterprise optimization, operation, configuration, maintenance and diagnostic application software. The control system architecture provides a method of dynamically creating a server directory to enable automatic access in an integrated control system. The method includes accessing a live list of fieldbus devices, building/updating a browse tree structure, the browse tree structure defining a branch and leaf node organization and naming for and data from the fieldbus devices, copying AP directories and FF objects from active fieldbus devices into a FF directory and mapping the FF Directory into the server directory.
Abstract:
The invention relates to a method for adjusting the data transmission rate in a fieldbus system (10) which is suitable to control safety-critical processes and which comprises at least one subscriber (12, 14) connected to a fieldbus (20), wherein in a first phase the subscriber/subscribers log on at a unit (30/central unit) centrally connected to the fieldbus with a first low data transmission rate. In a second phase the central unit (30) sets the data transmission rate at the subscriber/subscribers (12, 14) to a predetermined higher second value. In a third phase the subscriber/subscribers (12, 14) log on again at the central unit with a higher data transmission rate; and the central unit (30) shuts down the fieldbus (20) if it detects a deviation of the number of subscribers (12, 14) logged on in the first and the third phase. The invention also relates to a fieldbus system for implementing said method
Abstract:
The present invention is directed to a method of reprogramming a field device in a process control network using the standard communications protocol for the network, and a reprogrammable field device in the process control network adapted for being reprogrammed using the standard communications protocol for the network. The method and device of the present invention use the standard communications protocol to transmit the downloaded code to the field device and store the downloaded code in the field device while the device is enabled to perform process control. Once the new code is downloaded and stored in the field device, the field device is set to a steady state condition and/or disabled from performing process control, reprogrammed to execute the downloaded code, and reenabled to perform process control.
Abstract:
The invention relates to a method for adjusting the data transmission rate in a fieldbus system (10) which is suitable to control safety-critical processes and which comprises at least one subscriber (12, 14) connected to a fieldbus (20), wherein in a first phase the subscriber/subscribers log on at a unit (30/central unit) centrally connected to the fieldbus with a first low data transmission rate. In a second phase the central unit (30) sets the data transmission rate at the subscriber/subscribers (12, 14) to a predetermined higher second value. In a third phase the subscriber/subscribers (12, 14) log on again at the central unit with a higher data transmission rate; and the central unit (30) shuts down the fieldbus (20) if it detects a deviation of the number of subscribers (12, 14) logged on in the first and the third phase. The invention also relates to a fieldbus system for implementing said method