摘要:
Wireless circuitry in an electronic device may contain output power amplifier circuitry for amplifying transmitted radio-frequency signals. The power amplifier circuitry may be powered using a bias voltage. The magnitude of the bias voltage can be selectively reduced to conserve power. Control circuitry can maintain a table of bias voltage settings to use under various conditions. These conditions may include required output powers as determined by link quality, transmission mode status, and required data rates. When link quality is low or when high data rates are required, the bias voltage can be maintained at a relatively high level to ensure that the power amplifier operates linearly and does not exhibit excessive noise. When link quality is high or when data rates are low as with voice calls, the bias voltage can be reduced to conserve power.
摘要:
Wireless communications circuitry such as radio-frequency power amplifiers may be tested using a test station. A test station may include a test host and a test unit coupled to the test host. The power amplifiers may be configured to transmit radio-frequency signals in allocated resource blocks within a particular radio channel. The power amplifier circuits may be configured to transmit signals utilizing only an allocated portion of its total available resource blocks so that the transmitted signals are output at maximum power levels. The power amplifiers may transmit in resource blocks near a low channel edge during a first time period and may transmit in resource blocks near a high channel edge during a second time period. The test unit may receive the signals generated from the power amplifiers and may perform desired radio-frequency measurements (e.g., test unit may measure adjacent channel leakage radio, signal-to-interference ratio, error vector magnitude, etc.).
摘要:
Wireless communications circuitry such as radio-frequency power amplifiers may be tested using a test station. A test station may include a test host and a test unit coupled to the test host. The power amplifiers may be configured to transmit radio-frequency signals in allocated resource blocks within a particular radio channel. The power amplifier circuits may be configured to transmit signals utilizing only an allocated portion of its total available resource blocks so that the transmitted signals are output at maximum power levels. The power amplifiers may transmit in resource blocks near a low channel edge during a first time period and may transmit in resource blocks near a high channel edge during a second time period. The test unit may receive the signals generated from the power amplifiers and may perform desired radio-frequency measurements (e.g., test unit may measure adjacent channel leakage radio, signal-to-interference ratio, error vector magnitude, etc.).
摘要:
A portable user device may provide Global Positioning System (GPS) services. The device may include a GPS receiver. The GPS receiver may provide accurate information about the current location of the device. A user may use the device to perform tasks. Certain tasks may generate excess heat or de-generate heat that causes the GPS receiver to perform unsatisfactorily. Methods are provided that can test GPS receiver performance during acquisition mode and during tracking mode. During testing, the GPS receiver may be given a predetermined amount of time to acquire a GPS fix. The GPS receiver may be tested repeatedly to acquire successive GPS fixes. After a desired number of tests are performed, a success rate may be calculated. If the success rate is satisfactory, the GPS receiver satisfies design criteria. If the success rate is not satisfactory, the GPS receiver may be reconfigured with new settings.
摘要:
Wireless circuitry in an electronic device may contain output power amplifier circuitry for amplifying transmitted radio-frequency signals. The power amplifier circuitry may be powered using a bias voltage. The magnitude of the bias voltage can be selectively reduced to conserve power. Control circuitry can maintain a table of bias voltage settings to use under various conditions. These conditions may include required output powers as determined by link quality, transmission mode status, and required data rates. When link quality is low or when high data rates are required, the bias voltage can be maintained at a relatively high level to ensure that the power amplifier operates linearly and does not exhibit excessive noise. When link quality is high or when data rates are low as with voice calls, the bias voltage can be reduced to conserve power.