摘要:
Polymeric compositions include a nonaqueous additive system having dispersant-coated pigments physically dispersed in a liquid nonaqueous polymeric carrier which may be added directly to a melt flow of a polymeric host material. The additive system employed in the polymeric systems is most preferably in the form of a particulate paste which can be added in metered amounts (dosed) to a melt flow of the polymeric host material prior to being spun into filaments. By providing a number of additive systems having a number of different additive attributes, and controllably dosing one or more into the melt flow of host polymeric material, shaped objects of the polymeric material (e.g., melt-spun filaments) having different additive attributes may be produced on a continuous basis without shutting down the shaping operation.
摘要:
Polymeric compositions include a nonaqueous additive system having dispersant-coated pigments physically dispersed in a liquid nonaqueous polymeric carrier which may be added directly to a melt flow of a polymeric host material. The additive system employed in the polymeric systems is most preferably in the form of a particulate paste which can be added in metered amounts (dosed) to a melt flow of the polymeric host material prior to being spun into filaments. By providing a number of additive systems having a number of different additive attributes, and controllably dosing one or more into the melt flow of host polymeric material, shaped objects of the polymeric material (e.g., melt-spun filaments) having different additive attributes may be produced on a continuous basis without shutting down the shaping operation.
摘要:
A laboratory-scale device for assisting in the simulation of heat setting conditions includes a pair of laterally spaced-apart flexible heat-resistant cords (e.g., formed of aramid fibers) tensioned between forward and rearward rigid cross-support bars. At least one rigid tensioning bar is provided parallel to the support cords and extending between the cross-support bars so as to maintain the desired tension on the flexible heat-resistant cords. The tensioning bar thus allows for manual or automated lateral winding of the synthetic heat-settable fibers or yarns about the spaced-apart heat-resistant cords during preparation of the device for a laboratory test run. The tensioning bar may thereafter be removed once the device has been secured in position with the laboratory heat-setting oven. In such a manner, therefore, various effects on heat-setting conditions simulating can be investigated.
摘要:
Synthetic filaments include a nonaqueous additive system having dispersant-coated pigments physically dispersed in a liquid nonaqueous polymeric carrier. The additive system is most preferably in the form of a particulate paste which can be added in metered amounts (dosed) to a melt flow of the polymeric host material prior to being spun into filaments. By providing a number of additive systems having a number of different additive attributes, and controllably dosing one or more into the melt flow of polymeric material, melt-spun filaments having different additive attributes may be produced on a continuous basis (i.e., without shutting down the spinning operation). The filaments may be included in yarns which are formed into carpet structures.
摘要:
Methods of continuously producing sequential lengths of different additive-containing melt-spun filaments include continuously supplying a melt-spinnable polymeric host material to orifices of a spinneret and controllably dosing at least one dispersible additive concentrate system containing a pigment in a liquid nonaqueous polymeric carrier to the melt flow of polymeric host material upstream of the spinneret orifices. In such a manner, a first polymeric mixture of the dispersible additive concentrate system and the polymeric host material is obtained which achieves an additive attribute. During a first time interval, the first mixture is extruded through the spinneret orifices; and thereafter, during a second subsequent time interval, the dosing of the at least one dispersible additive is changed so as to form a second mixture having a second additive attribute different from the first additive attribute while continuously supplying the melt flow of polymeric host material to the spinneret orifices. The melt-spun filaments will thus have a first length corresponding to the first additive attribute of the first mixture and a second subsequent length corresponding to the second additive attribute of the second mixture. The methods and additives employed most preferably achieve Hunter Green Purge Values of between about 0.10 to about 1.40 sec/cm.sup.3.
摘要:
Nonaqueous additive systems which includes dispersant-coated pigments physically dispersed in a liquid nonaqueous polymeric carrier are added directly to a melt flow of a polymeric host material prior to spinning. The additive system is most preferably in the form of a particulate paste which can be added in metered amounts (dosed) to a melt flow of the polymeric host material prior to being spun into filaments. By providing a number of additive systems having a number of different additive attributes, and controllably dosing one or more into the melt flow of polymeric material, melt-spun filaments having different additive attributes may be produced on a continuous basis (i.e., without shutting down the spinning operation).