摘要:
The present invention relates to a system and method for automated or “robotic” application of hardfacing to the surface of a steel-toothed cutter of a standard earth-boring rock bit or a hybrid-type rock bit. In particular, the system incorporates a grounded adapter plate and chuck mounted to a robotic arm for grasping and manipulating a rock bit cutter, particularly a hybrid rock bit cutter, beneath an electrical or photonic energy welding source, such as a plasma arc welding torch manipulated by a positioner. In this configuration, the torch is positioned substantially vertically and oscillated along a horizontal axis as the cutter is manipulated relative along a target path for the distribution of hardfacing. Moving the cutter beneath the torch allows more areas of more teeth to be overlayed, and allows superior placement for operational feedback, such as automatic positioning and parameter correction. In the preferred embodiment, sensors provide data to the control system for identification, positioning, welding program selection, and welding program correction. The control system, aided by data from the sensors, manipulates the robotically held cutter while controlling the operation and oscillation of the torch. These systems and methods can be applied to hardfacing steel teeth of the rolling cutters of both standard tri-cone or di-cone type rolling cone bits, as well as to hybrid-type earth boring drill bits.
摘要:
Tear film is measured without contacting the eye by comparing reflectance from the eye when the tear film is undisturbed with reflectance from the eye when the when the tear film is disturbed. If the reflectance levels differ somewhat, it is an indication that a healthy tear film exhibiting good specular reflection was present initially and was disturbed by the air pulse. However, if the reflectance levels are close to one another, it is an indication that a less-than-normal tear film was present initially (dry eye). In a described embodiment, tear film is disturbed by an air pulse directed at the eye, and a photosensitive detector is positioned to receive light from an illumination beam after the beam is reflected by the eye to generate a reflectance signal. The reflectance signal is evaluated to calculate a tear film index.
摘要:
A method and apparatus for measuring intraocular pressure of an eye use an empirically derived function wherein an inward applanation pressure P1 and an outward applanation pressure P2 obtained during a corneal deformation cycle caused by a fluid pulse are separately weighted so as to minimize cornea-related influence on the intraocular pressure value calculated by the function. In one embodiment, the function is optimized, at least in part, to minimize change in calculated IOP between measurements made before surgical alteration of the cornea and measurements made after surgical alteration of the cornea.
摘要:
A method and apparatus for measuring corneal resistance to deformation use an empirically derived function wherein an inward applanation pressure P1 and an outward applanation pressure P2 obtained during a corneal deformation cycle caused by a fluid pulse are separately weighted so as to minimize dependence of the calculated corneal resistance factor (CRF) on intraocular pressure. In one embodiment, the function is optimized, at least in part, to maximize statistical correlation between the calculated corneal resistance factor (CRF) and central corneal thickness.
摘要:
The present invention relates to a system and method for automated or “robotic” application of hardfacing to the surface of a steel-toothed cutter of a standard earth-boring rock bit or a hybrid-type rock bit. In particular, the system incorporates a grounded adapter plate and chuck mounted to a robotic arm for grasping and manipulating a rock bit cutter, particularly a hybrid rock bit cutter, beneath an electrical or photonic energy welding source, such as a plasma arc welding torch manipulated by a positioner. In this configuration, the torch is positioned substantially vertically and oscillated along a horizontal axis as the cutter is manipulated relative along a target path for the distribution of hardfacing. Moving the cutter beneath the torch allows more areas of more teeth to be overlayed, and allows superior placement for operational feedback, such as automatic positioning and parameter correction. In the preferred embodiment, sensors provide data to the control system for identification, positioning, welding program selection, and welding program correction. The control system, aided by data from the sensors, manipulates the robotically held cutter while controlling the operation and oscillation of the torch. These systems and methods can be applied to hardfacing steel teeth of the rolling cutters of both standard tri-cone or di-cone type rolling cone bits, as well as to hybrid-type earth boring drill bits.