Abstract:
A new optimization method for generating treatment plans for radiation oncology is described and claimed. This new method works for intensity modulated radiation therapy (IMRT), intensity modulated arc therapy (IMAT), and hybrid IMRT.
Abstract:
A new optimization method for generating treatment plans for radiation oncology is described and claimed. This new method works for intensity modulated radiation therapy (IMRT), intensity modulated arc therapy (IMAT), and hybrid IMRT.
Abstract:
The invention is directed to a radiation therapy method, and in particular, to a method of conducting an intensity modulated arc therapy (IMAT). The invention provides a planning technique that translates traditional static fixed-field IMRT plans into deliverable IMAT plans and allows IMAT to be realized as a routine clinical delivery technique.
Abstract:
A method for determining a radiation treatment plan for a radiotherapy system providing multiple individual rays of intensity modulated radiation iteratively optimized the fluence of an initial set of such rays by a function that requires knowledge of only the prescribed dose and the dose resulting from the particular ray fluences. In this way, the need to store individual dose distributions of each ray are eliminated.
Abstract:
The invention is directed to a radiation therapy method, and in particular, to a method of conducting an intensity modulated arc therapy (IMAT). The invention provides a planning technique that translates traditional static fixed-field IMRT plans into deliverable IMAT plans and allows IMAT to be realized as a routine clinical delivery technique.