Abstract:
Disclosed are embodiments of a modular printing system with one or more modules having one or more bypass paths and comprise a modular printing system with a module (e.g., a stacker or feeder module) having a main compartment and at least one additional compartment. Contained within the main compartment is a main sheet transport path and a functional component (e.g., a sheet stacking device or a sheet feeding device) connected to the main sheet transport path. Contained with the additional compartment is a bypass path. The bypass path allows sheets to be routed through the module in the event of a print media sheet jam in the main sheet transport path. Because the bypass path is contained within a separate compartment, the jam can be cleared from the main compartment without cycling down the printing system, thereby allowing for continued productivity.
Abstract:
Embodiments herein include a media conditioning module for being connected between a media source supplying sheets of media and a printing device. The media conditioning module is adapted to remove moisture from the sheets of media received from the media source before the sheets of media are supplied to the printing device. The media conditioning module comprises a heater and a cooler. The heater has manifolds positioned to supply heated air to both sides of the sheets of media as the sheets of media pass through the media conditioning module. The cooler is positioned to supply non-heated air to both sides of the sheets of media as the sheets of media pass through the media conditioning module. The heater is positioned with respect to the cooler such that the sheets of media pass by the heater before the sheets of media pass by the cooler.
Abstract:
Disclosed are embodiments of a modular printing system with one or more modules having one or more bypass paths and comprise a modular printing system with a module (e.g., a stacker or feeder module) having a main compartment and at least one additional compartment. Contained within the main compartment is a main sheet transport path and a functional component (e.g., a sheet stacking device or a sheet feeding device) connected to the main sheet transport path. Contained with the additional compartment is a bypass path. The bypass path allows sheets to be routed through the module in the event of a print media sheet jam in the main sheet transport path. Because the bypass path is contained within a separate compartment, the jam can be cleared from the main compartment without cycling down the printing system, thereby allowing for continued productivity.
Abstract:
A large format stacking tray in an image production device is disclosed. The large format stacking tray may include a tray body of a first length that may be attachable to a stacker device in a finishing module of the image production device, and a tray top surface located on top of the tray body on which a media stack containing one or more media sheets rests upon after being output by the image production device. The tray top surface has a first end and a second end opposite the first end. The tray top surface may be sloped between the first end and the second end in a manner that permits media sheets that are longer than the first length to be output and stacked onto the stacker device.
Abstract:
A sheet registration system for a sheet handling device has a plurality of driven belts. Each belt is entrained about a driven roller and an idler roller. The driven rollers are fixedly mounted on a common drive shaft that is connected to a motor. The idler rollers each have a shaft and the idler shafts are coaxially aligned and parallel to the common drive shaft. Adjacent idler shafts are interconnected. The idler rollers are cantilevered about the common drive shaft and may be pivoted thereabout. The gravitational force on the cantilevered idler rollers provide the normal pressure on the belts to produce the frictional force necessary to acquire and register incoming sheets. Selective pivoting of the idler rollers in response to sheet media parameters inputted to a control panel by an end user automatically varies the normal pressure of the idler rollers and adjusts the frictional force of the belts.
Abstract:
A dynamic positional shifting, in the process direction, of the images on the second print engine of a tandem machine printing system in order to increase the time (and number of prints) between skipped pitches. Although the photoreceptor belts of each print engine may be out-of-phase, the relative positions of their individual seam zones may be derived during cycle-up. A control procedure then optimizes the position and spacing of each image within each belt revolution of the second engine, while still maintaining the minimum inter-document zone (IDZ) length required for paper path feeding and registration, xerographic process controls, and finishing. Removing the constraints of fixed-dimension IDZ's, as well as being able to adjust spacing and length of individual images on the belt, allows for optimization of system productivity by either delaying or eliminating the need for a skipped pitch.
Abstract:
A calibration procedure for the synchronization of photoreceptor belt seams of tandem marking devices at system cycle-up. The procedure allows for images projected upon equivalent image panels relative to the belt seams of the tandem engines to be printed on the same sheet. The successive image panels on each belt are of relatively equal distance from the respective belt seams. Thus there is less frequency of the need to skip pitches in the printing operation to avoid either imaging on a belt seam or having the sheet arrive outside the input timing window for second engine sheet registration.
Abstract:
A dynamic positional shifting, in the process direction, of the images on the second print engine of a tandem machine printing system in order to increase the time (and number of prints) between skipped pitches. Although the photoreceptor belts of each print engine may be out-of-phase, the relative positions of their individual seam zones may be derived during cycle-up. A control procedure then optimizes the position and spacing of each image within each belt revolution of the second engine, while still maintaining the minimum inter-document zone (IDZ) length required for paper path feeding and registration, xerographic process controls, and finishing. Removing the constraints of fixed-dimension IDZ's, as well as being able to adjust spacing and length of individual images on the belt, allows for optimization of system productivity by either delaying or eliminating the need for a skipped pitch.
Abstract:
A calibration procedure for the synchronization of photoreceptor belt seams of tandem marking devices at system cycle-up. The procedure allows for images projected upon equivalent image panels relative to the belt seams of the tandem engines to be printed on the same sheet. The successive image panels on each belt are of relatively equal distance from the respective belt seams. Thus there is less frequency of the need to skip pitches in the printing operation to avoid either imaging on a belt seam or having the sheet arrive outside the input timing window for second engine sheet registration.
Abstract:
A sheet registration system for a sheet handling device has a plurality of driven belts. Each belt is entrained about a driven roller and an idler roller. The driven rollers are fixedly mounted on a common drive shaft that is connected to a motor. The idler rollers each have a shaft and the idler shafts are coaxially aligned and parallel to the common drive shaft. Adjacent idler shafts are interconnected. The idler rollers are cantilevered about the common drive shaft and may be pivoted thereabout. The gravitational force on the cantilevered idler rollers provide the normal pressure on the belts to produce the frictional force necessary to acquire and register incoming sheets. Selective pivoting of the idler rollers in response to sheet media parameters inputted to a control panel by an end user automatically varies the normal pressure of the idler rollers and adjusts the frictional force of the belts.