Abstract:
A vaporizer generating feed gas for the arc chamber of an ion source has a crucible which is heated to a temperature at which material in the crucible sublimes to produce a vapour for use as the feed gas. In addition to the heating element for heating the crucible, there is a cooling element in the form of a cooling duct extending along the length of the crucible for receiving the cooling fluid. Forced cooling of the crucible when the heating element is switched off enables the crucible to be cooled more quickly so that the supply of a feed gas can be terminated sooner. This is important if an ion source is being switched from one feed gas to another. Also, the crucible may be forced cooled simultaneously while energizing the heating element to enable the crucible to be accurately controlled at a lower operating temperature if desired.
Abstract:
An ion implanter has an ion source (10) and an ion beam extraction assembly (50) for extracting the ions. The extraction assembly (50) is a tetrode structure and one of the pairs of extraction electrodes (51) has left and right ports (54, 55) located in opposite sides of the ion beam emerging from the ion source (10). The left and right electrode ports (54, 55) are electrically isolated from each other and connected to independent voltage sources (210, 230). The ion implanter also has a baffle plate (60) at the entrance to a mass analyser (90) downstream of the extraction assembly (50). The baffle plate (60) is also split into two halves (60′ and 60″). By measuring the beam current incident on the two halves (60′, 60″) of the baffle (60), the relative voltages supplied to the left and right electrode parts (54, 55) may be adjusted so as to steer the ion beam and adjust the angle of incidence of the longitudinal axis thereof relative to the input of the analysing magnet (90).
Abstract:
An ion beam apparatus comprises a source of ions (1), an evacuatable chamber (11), first and second electrodes (3, 5) disposed within the chamber for forming an ion beam from ions from the ion source, the first electrode being electrically insulated from the second electrode. At least one insulating member (31, 33), at least part of which is within the chamber provides the insulation, wherein a part of the insulating member is positioned adjacent the wall of the chamber. Alternatively, means for feeding coolant proximate the insulating member is provided to withdraw heat from the insulating member.