Abstract:
An electrochemical cell system comprises: a fuel cell module comprising a fuel cell outlet, an electrolysis module comprising an electrolysis water inlet in fluid communication with a water storage device and a hydrogen gas outlet in fluid communication with a hydrogen storage device, and a drainage system disposed downstream of the fuel cell hydrogen outlet and upstream of the water storage device and configured to remove water from the electrochemical cell system upon water within the water storage device attaining a selected level.
Abstract:
A modular power system having separately removable electrolysis and power modules, each with separate sets of connection ports, is disclosed. The connection port set of the electrolysis module is adapted for operable communication with a water supply, a hydrogen storage device, and the power module, and the connection port set of the power module is adapted for operable communication with the water supply, the hydrogen storage device, and the electrolysis module.
Abstract:
A method of monitoring the operation of a gas sensor is disclosed. A system signal is provided in response to sensing first or second system conditions, and a gas concentration signal is provided in response to sensing first or second gas concentration levels of a gas. In response to the system and gas concentration signals, a signal indicating the operating condition of the gas sensor is provided.
Abstract:
A regenerative fuel cell power system has a plurality of fuel cell power modules, a plurality of electrolysis modules, a water management system and a master controller. The master controller manages the temperature within the electrolysis system to prevent freezing through circulation of water from the water management system.
Abstract:
A regenerative fuel cell system is provided having at least one hydrogen storage container fluidly coupled to at least one hydrogen generator and at least one power generator. Each power generator further includes a fuel cell fluidly coupled to the hydrogen storage container, an electric energy storage device, and an unregulated dc bus electrically connected to said fuel cell and said electric storage device. The system further provides for a health monitoring system for determining the occurrence of critical events which may necessitate the disabling of the system.
Abstract:
A regenerative fuel cell system is provided having at least one hydrogen storage container fluidly coupled to at least one hydrogen generator and at least one power generator. Each power generator further includes a fuel cell fluidly coupled to the hydrogen storage container, an electric energy storage device, and an unregulated dc bus electrically connected to said fuel cell and said electric storage device. The system further provides for a health monitoring system for determining the occurrence of critical events which may necessitate the disabling of the system.