Abstract:
Aqueous dispersions of carboxylated cellulose esters are disclosed having a low organic solvent content. These dispersions can be prepared using a volatile hydrophilic organic solvent and a coupling organic solvent having a lower volatility, the volatile hydrophilic solvent being substantially stripped off during preparation to obtain a dispersion useful in a variety of coating compositions, providing satisfactory performance in metallic flake control, flow and leveling properties, and defect reduction.
Abstract:
Disclosed are coating formulations that include a copolyester and a vinyl ether in which the copolyester is produced by copolymerizing a monomer composition that includes a fused aromatic diacid monomer, an unsaturated diacid monomer, and a polyol. Also disclosed are methods for producing a laser-ablatable film on a surface of a substrate. The method includes coating the substrate with a coating formulation that includes a copolyester and a vinyl ether and polymerizing the coating formulation. The copolyester includes a fused aromatic moiety covalently bonded therein. Novel radiation curable sensitizers that can be used in the preparation of radiation curable polymer films having improved laser ablation properties are also described.
Abstract:
The invention relates to novel aqueous coating compositions containing epoxy urethane (glycidyl carbamate) functional resin. An aqueous coating composition comprises a polyfunctional oligomer having at least two epoxy urethane functional groups and a polyalkylene oxide chain, a surfactant and water. The aqueous coating compositions of the invention can be dispersed in water with added surfactants to form a dispersion containing no volatile organic solvent. The invention provides a method for making aqueous coating compositions containing epoxy urethane functional resin as well. Water-dispersible epoxy urethane compounds of the aqueous coating compositions are also provided.