Abstract:
In one embodiment, an n-dimensional resource vector for each of a plurality of resources in a computer network is determined, each n-dimensional resource vector having n property values for a corresponding resource of the plurality of resources. Upon receiving a request for one or more resources of the plurality of resources, where the request indicates one or more desired property values, the techniques convert the desired property values of the request into an n-dimensional request vector, determine a distance between each resource vector and the request vector, and provide a response to the request, the response indicating one or more closest match resources for the request based on the distances.
Abstract:
Techniques are provided herein for defragmenting resources within a cloud computing system. The cloud computing system includes a plurality of servers deployed in a plurality of respective racks, wherein the respective racks are deployed in a pod of a data center. An element of the cloud computing system determines for each server in a given rack of servers a number of free resource slots available thereon and a number of resource slots in an idle state, and then further determines whether the number of free resource slots on a first server in the plurality of servers is greater than a predetermined threshold. When the number of free resource slots in the first server is greater than the predetermined threshold, a second server in the plurality of servers is identified with sufficient resource slots thereon to accommodate the number of resource slots in the idle state on the first server, and the resource slots in the idle state on the first server are caused to be migrated to the second server.
Abstract:
A method for summarizing capabilities in a hierarchically arranged data center includes receiving capabilities information, wherein the capabilities information is representative of capabilities of respective nodes at a first hierarchical level in the hierarchically arranged data center, clustering nodes based on groups of capabilities information, generating a histogram that represents individual node clusters, and sending the histogram to a next higher level in the hierarchically arranged data center. Relative rankings of capabilities may be used to order a sequence of clustering operations.
Abstract:
Data representing capabilities of devices in a data is aggregated on a cluster-basis. Information representing capability attributes of devices in the data center is received. The information representing the capability attributes is analyzed to generate data that groups devices based on similarity of at least one capability attribute. Aggregation data is stored that represents the grouping of the devices based on similarity of the at least one capability attribute and identifies the devices in corresponding groups.
Abstract:
A method for summarizing capabilities in a hierarchically arranged data center includes receiving capabilities information, wherein the capabilities information is representative of capabilities of respective nodes at a first hierarchical level in the hierarchically arranged data center, clustering nodes based on groups of capabilities information, generating a histogram that represents individual node clusters, and sending the histogram to a next higher level in the hierarchically arranged data center. Relative rankings of capabilities may be used to order a sequence of clustering operations.
Abstract:
In one embodiment, an n-dimensional resource vector for each of a plurality of resources in a computer network is determined, each n-dimensional resource vector having n property values for a corresponding resource of the plurality of resources. Upon receiving a request for one or more resources of the plurality of resources, where the request indicates one or more desired property values, the techniques convert the desired property values of the request into an n-dimensional request vector, determine a distance between each resource vector and the request vector, and provide a response to the request, the response indicating one or more closest match resources for the request based on the distances.
Abstract:
In one embodiment, a method comprises retrieving a request graph specifying request nodes identifying respective requested cloud computing service operations, and at least one request edge specifying a requested path requirements connecting the request nodes; identifying a placement pivot among feasible cloud elements identified in a physical graph representing a data network having a physical topology, each feasible cloud element an available solution for one of the request nodes, the placement pivot having a maximum depth in the physical topology relative to the feasible cloud elements; ordering the feasible cloud elements, according to increasing distance from the placement pivot to form an ordered list of candidate sets of feasible cloud elements; and determining an optimum candidate set, from at least a portion of the ordered list, based on the optimum candidate set having an optimized fitness function in the physical graph among the other candidate sets in the ordered list.
Abstract:
Data representing capabilities of devices in a data is aggregated on a cluster-basis. Information representing capability attributes of devices in the data center is received. The information representing the capability attributes is analyzed to generate data that groups devices based on similarity of at least one capability attribute. Aggregation data is stored that represents the grouping of the devices based on similarity of the at least one capability attribute and identifies the devices in corresponding groups.
Abstract:
A first network device determines capabilities of resources in a section of a network that is accessible using the first network device. The first network device groups the resources into a resource cluster. The first network device advertises the resource cluster in the network, wherein each of a plurality of network devices advertise a resource cluster associated with sections of the network. A second network device receives a request for providing a service. The second network device groups the request into a plurality of request clusters. The second network device selects at least one resource cluster for providing the service based on information associated with the request clusters and the advertised resource clusters. The second network device allocates resources included in the at least one resource cluster for providing the service based on selecting the at least one resource cluster.
Abstract:
Techniques are provided herein for defragmenting resources within a cloud computing system. The cloud computing system includes a plurality of servers deployed in a plurality of respective racks, wherein the respective racks are deployed in a pod of a data center. An element of the cloud computing system determines for each server in a given rack of servers a number of free resource slots available thereon and a number of resource slots in an idle state, and then further determines whether the number of free resource slots on a first server in the plurality of servers is greater than a predetermined threshold. When the number of free resource slots in the first server is greater than the predetermined threshold, a second server in the plurality of servers is identified with sufficient resource slots thereon to accommodate the number of resource slots in the idle state on the first server, and the resource slots in the idle state on the first server are caused to be migrated to the second server.