摘要:
A formulation containing a biologically active compound having a chemical structure with hydrogen bonding sites, a first biocompatible, hydrolytically degrading polycarbonate with hydrogen bonding sites and tyrosine-derived diphenol monomer units, and a second biocompatible hydrolytically degrading polymer that is less hydrophobic than the polycarbonate, wherein the second polymer degrades hydrolytically to form acidic degradation products that promote the release of the active compound. Methods for active compound delivery are also disclosed.
摘要:
A formulation containing a biologically active compound having a chemical structure with hydrogen bonding sites, a first biocompatible, hydrolytically degrading polycarbonate with hydrogen bonding sites and tyrosine-derived diphenol monomer units, and a second biocompatible hydrolytically degrading polymer that is less hydrophobic than the polycarbonate, wherein the second polymer degrades hydrolytically to form acidic degradation products that promote the release of the active compound. Methods for active compound delivery are also disclosed.
摘要:
A formulation containing a biologically active compound having a structure with hydrogen bonding sites blended with a first polymer having a structure with complementary hydrogen bonding sites and a second polymer that degrades to form degradation products that promote the release of the active compound from the first polymer.
摘要:
The present invention relates to an implantable device comprising a biocompatible, biodegradable polymer mixed with TMC278 and with one or more release-enhancing agents selected from the group consisting of poloxamers, polysorbates, and a combination of dimethyl sulfoxide (DMSO) and poly(vinyl pyrrolidone)(PVP).
摘要:
A formulation containing a biologically active compound having a structure with hydrogen bonding sites is blended with a polymer having a structure with complementary hydrogen bonding sites, the polymer forming hydrolytic degradation products that promote the release of the biologically active compound from the polymer.
摘要:
A self-gelling tunable drug delivery system is disclosed. The self-gelling tunable drug delivery system is comprised of a hydrophilic matrix and a hydrophobic matrix.
摘要:
A degradable, removable, pharmaceutical implant for the sustained release of one or more drugs in a subject, wherein the pharmaceutical implant is composed of a tube comprising an outer wall made of a degradable polymer completely surrounding a cavity, wherein the outer wall has a plurality of openings and wherein the cavity contains one or more sets of micro-particles, which micro-particles contain an active agent or a combination of two or more active agents, and wherein the size of the microparticles is selected such that the majority of the microparticles cannot pass through the openings.
摘要:
A degradable, removable, pharmaceutical implant for the sustained release of one or more drugs in a subject, wherein the pharmaceutical implant is composed of a tube comprising an outer wall made of a degradable polymer completely surrounding a cavity, wherein the outer wall has a plurality of openings and wherein the cavity contains one or more sets of micro-particles, which micro-particles contain an active agent or a combination of two or more active agents, and wherein the size of the microparticles is selected such that the majority of the microparticles cannot pass through the openings.
摘要:
We have disclosed an implantable sustained release composition comprising, a biocompatible, biodegradable polymer, a cyclodextrin inclusion complex of a poorly water soluble pharmaceutical agent present, and a plasticizer, where the polymer is the minority phase of the formulation. Furthermore, The we disclose an implantable sustained release composition that provides a detectable plasma level of an otherwise poorly soluble drug for at least 28 days.
摘要:
A formulation containing a biologically active compound having a structure with hydrogen bonding sites is blended with a polymer having a structure with complementary hydrogen bonding sites, the polymer forming hydrolytic degradation products that promote the release of the biologically active compound from the polymer.