Abstract:
This disclosure is directed to electrical connectors, and more specifically to a duplex or multiplex electrical connector having an integrally formed connector body having an inlet end portion defining a plurality of passageways for receiving a cable, and an outlet end portion wherein the outlet end portion is provided with an outer surface that slopes downwardly toward the outlet opening and having a complementary sloping or frustro-conical, snap fit, outer, retaining ring with locking tangs and grounding tangs for snap locking the outlet end portion of the connector to an electric box or panel, and including a unidirectional cable retaining sleeve disposed within each of the inlet bores or passageways which are firmly secured therein in a predetermined oriented position relative to the respective passageway, and having a non-conducting bushing sandwiched between the outlet end opening and the outer frustro-conical retaining ring.
Abstract:
This disclosure is directed to electrical connectors that include a connector body having an inlet end portion and an outlet end portion and a bore extending therethrough, wherein the outlet end portion is provided with an outer surface that slopes downwardly toward the outlet opening and having a complementary sloping or frustro-conical retaining ring having locking tangs and grounding tangs for snap locking the outlet end portion to an electric box or enclosure, and a wire retainer fitted to the inlet end portion for receiving and securing a wire conductor thereto. The connector body may take several forms including a form wherein the inlet opening is angularly disposed relative to the outlet opening, with the inlet opening being formed to be press fitted onto a flexible conduit.
Abstract:
An electrical connection assembly for securing electrical metal conduit to a junction box or the like, having a connection body with an inlet end portion for receiving a conduit wherein the inlet end includes a first portion sized to snugly receive an end portion of a conduit and a second portion having an internal surface that diverges outwardly toward the opening of the inlet end portion. A unitary sealing and compression ring is fitted onto the end portion of a conduit, and is positioned thereon so that the sealing ring portion of the unitary ring is received within the inlet end portion. A fastening nut secures the conduit to the inlet portion by causing the sealing ring portion to form a water or fluid tight seal between the connector body and the associated conduit and forming a mechanically sound connection between the connector body and the conduit. The unitary sealing and compression ring formed of metal insures positive electrical grounding of the assembled connection.
Abstract:
An electrical connector assembly having improved conductivity and continuity. A snap in or push in electrical connector having a zinc body and spring steel components plated with high conductivity metal, such as tin, providing a reduced voltage drop across the attached electrical connector. In an embodiment, a connector assembly has a connector body having opposed end openings provided with an outer surface that slopes downwardly toward the outlet opening. The inlet opening having placed therein cable retainer inserts. A sloping or frustro-conical, snap fit, snap in, or push in outer retaining ring with locking tangs is provided for snap locking the outlet end portion of the connector body to an electrical box or panel. Improved conductivity or continuity is obtained and a good electrical ground is formed between the electrical box and connector assembly.
Abstract:
An electrical connector assembly having a snap fit adaptor with bent grounding tangs providing improved electrical contact and enhanced grounding. An electrical connector assembly is adapted to snap fit within a knockout hole of an electrical box or panel for making electrical connections. A snap fit adaptor placed on the outlet end of a connector body has a plurality of locking tangs and grounding tangs. The locking tangs hold the connector assembly onto the electrical box, and a distal trailing edge of the grounding tangs extends into the knockout hole in the electrical box and are curved or shaped to provide a large surface area contact improving electrical continuity and providing enhanced electrical grounding. A safer more reliable electrical grounding connecting is made easily and without tools.
Abstract:
This disclosure is directed to various embodiments of an electrical connector assembly that includes a connector body having an inlet end portion and an outlet end portion. The outlet end portion has an associated locking member whereby it can be readily attached to a knock out hole of an electric box and the inlet end portion is provided with a wire conductor retainer in the form of a flat spring configured to be readily connected to an external portion of a connector body for ease of manufacture and assembly, and which is configured to extend through an opening formed in the inlet end portion whereby an electric conductor can be unidirectionally inserted in the inlet end portion and secured thereto so as to prohibit any unintentional separation from the connector body, all without the need of any extraneous tools.
Abstract:
An electric connector assembly disclosing various embodiments, each of which includes a connector body having a frustro-conically shaped outlet end portion that converges toward the outlet opening and having a complementary frustro conically shaped retainer ring circumscribing the outlet end portion wherein the retainer ring is integrally formed with a locking tang and ground tangs arranged to be snap fitted to a knock-out hole of an electric box. The latest embodiment includes a frustro-conical retainer ring having an auxiliary tang arranged to permit the connector assembly to be obliquely inserted and locked to a knock-out hole of an electric box using a minimum of applied force for effecting a snap fit connection to both lock and electrically ground the connector assembly to the electric box and a method of installing the associated connector body to an electric box.
Abstract:
An electrical connector that includes a connector body having an inlet end and an outlet end that slopes downwardly toward the outlet opening that is circumscribed by a complementary frustro conical outer snap-fit retaining ring mounted on the outlet end of the connector body. The outer frustro conical retaining ring is integrally formed from a blank of spring steel having integral locking and grounding tangs blanked or formed out of the plane of the blank. The connector assembly also includes an internal sleeve having inwardly formed spring fingers to secure an electrical conductor to the inlet end by a snap fit. In an alternate embodiment, a simple clamp arrangement is substituted for the internal snap fit sleeve for securing a wire conductor to the inlet end of the connector assembly. In another embodiment, the connector assembly includes a connector body having complementary body sections, one of which includes a leading end, with the complementary body sections defining a trailing end having multiple chambers for accommodating a wire conductor retaining sleeve within the respective chambers whereby multiple conductors can be secured to the connector body with a snap fit.
Abstract:
An electric connector assembly having a connector body defining an inlet end portion and an outlet end portion interconnected by a through bore wherein the outlet end portion is provided with a tapering frustro conical surface that is circumscribed by an external retainer ring of a frustro conical shape complementing the frustro conical outer surface of the outlet end portion. The conical external retainer ring also includes locking and grounding tangs arranged to effect a snap fit connection of the connector assembly to a knock-out hole of an electric box or panel. The electric connector assembly further contemplates the use of internal wire conductor retainer associated with the inlet end portion so as to effect the attachment of an electric wire conductor thereto with a snap fit in a manner that prohibits any unintentional separation of the electric wire conductor therefrom.