摘要:
The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.
摘要:
Perfusion measurement method. The method includes detecting a signal emanating from the tissue and processing the signal to detect fluctuations substantially spatially correlated on a length scale less than 1 centimeter. The fluctuations are then analyzed to obtain a measure of perfusion. In one embodiment, the detected fluctuations are substantially correlated with fluctuations of a biological parameter such as the cardiac cycle or the respiratory cycle.
摘要:
The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.
摘要:
This invention involves method and apparatus for guiding ablative therapy of abnormal biological electrical excitation. In particular, it is designed for treatment of cardiac arrhythmias. In the method of this invention electrical signals are acquired from passive electrodes, and an inverse dipole method is used to identify the site of origin of an arrhythmia. The location of the tip of the ablation catheter is similarly localized from signals acquired from the passive electrodes while electrical energy is delivered to the tip of the catheter. The catheter tip is then guided to the site of origin of the arrhythmia, and ablative radio frequency energy is delivered to its tip to ablate the site.
摘要:
The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.
摘要:
This invention involves method and apparatus for guiding ablative therapy of abnormal biological electrical excitation. In particular, it is designed for treatment of cardiac arrhythmias. In the method of this invention electrical signals are acquired from passive electrodes, and an inverse dipole method is used to identify the site of origin of an arrhytmia. The location of the tip of the ablation catheter is similarly localized from signals acquired from the passive electrodes while electrical energy is delivered to the tip of the catheter. The catheter tip is then guided to the site of origin of the arrhythmia, and ablative radio frequency energy is delivered to its tip to ablate the site.