Abstract:
A method for controlling a micro-mirror, having the following: generating a first control signal which encodes a tilting motion of the micro-mirror about a first tilt axis, at a first frequency; generating a second control signal which encodes a tilting motion of the micro-mirror about a second tilt axis which is perpendicular to the first tilt axis, at a second frequency which is lower than the first frequency; modulating the second control signal by binary modulation of the second control signal, at the first frequency; and controlling force coupling elements of the micro-mirror, using the modulated second control signal and the first control signal.
Abstract:
A method for controlling a micro-mirror, having the following: generating a first control signal which encodes a tilting motion of the micro-mirror about a first tilt axis, at a first frequency; generating a second control signal which encodes a tilting motion of the micro-mirror about a second tilt axis which is perpendicular to the first tilt axis, at a second frequency which is lower than the first frequency; modulating the second control signal by binary modulation of the second control signal, at the first frequency; and controlling force coupling elements of the micro-mirror, using the modulated second control signal and the first control signal.
Abstract:
A method for producing a silicon torsion spring capable, for example, of reading the rotation rate in a microstructured torsion spring/mass system. The system that is produced achieves a low torsional stiffness compared to a relatively high transverse stiffness in the lateral and vertical directions. The method proceeds from a wafer or wafer composite and, upon suitable mask coverage, a spring with a V-shaped cross section is formed by anisotropic wet-chemical etching which preferably extends over the entire wafer thickness and is laterally delimited only by [111] planes. Two of the wafers or wafer composites prepared in this way are rotated through 180° and joined to one another oriented mirrorsymmetrically with respect to one another, so that overall the desired X-shaped cross section is formed.