Abstract:
Acoustic data can be collected from oil wells having various configurations of tubing and casing and under various operational conditions such as pumping, shut-in, and transition phases such as pressure build up. The acoustic data is collected by a microphone in response to the generation of an acoustic pulse that is transmitted into the well. There is typically substantial noise in the well pipes and this noise can degrade the quality of the reflected data recorded from the acoustic pulse. Much of this noise is produced by the flow of gas in the tubing and associated flow lines. Apparatus for use with the well can be configured to control the state of certain valves which can lead to a reduction of the noise received for the microphone that records the acoustic data.
Abstract:
There is disclosed a process for the purification of sewage containing fatty and albuminous matter. Raw sewage, which is optionally subjected to primary settling in a primary settling tank, is adjusted so that the pH is approximately the same as the isoelectric point of the main components of the proteins present in the sewage. The sewage is then mixed with an aqueous solution of a substituted anionic starch to precipitate the fatty and albuminous matter by flocculation. Following a short dwell time period, the sewage is subjected to an expansion flotation under a dispersion pressure of 4.5-6 bar. The flotation sludge is separated and a clarified effluent is obtained. The flotation sludge is sterilized by treatment with ultraviolet radiation and the clarified effluent is passed to waste.
Abstract:
Acoustic data can be collected from oil wells having various configurations of tubing and casing and under various operational conditions such as pumping, shut-in, and transition phases such as pressure build up. The acoustic data is collected by a microphone in response to the generation of an acoustic pulse that is transmitted into the well. There is typically substantial noise in the well pipes and this noise can degrade the quality of the reflected data recorded from the acoustic pulse. Much of this noise is produced by the flow of gas in the tubing and associated flow lines. Apparatus for use with the well can be configured to control the state of certain valves which can lead to a reduction of the noise received for the microphone that records the acoustic data.
Abstract:
A system for wirelessly monitoring a well fluid extraction process, which operates in conjunction with a host computer. The system includes a wireless base that has a base radio and a communication port to interface with the host computer. The system also has a first remote with a first remote radio that communicates with the base radio using a radio protocol. The first remote also has a first sensor interface that can receive a first sensor signal. The first remote digitally samples the first sensor signal at a predetermined sampling rate, and then communicates first sampled data to the wireless base through the radio protocol. A host software application, which executes on the host computer, receives the first sampled data from the wireless base communication port.
Abstract:
Plunger lift operations are difficult to optimize due to lack of knowledge of tubing pressure, casing pressure, bottom-hole pressure, liquid accumulation in the tubing and location of the plunger. Monitoring the plunger position in the tubing helps the operator (or controller) to optimize the removal of liquids and gas from the well. The plunger position can be tracked from the surface by monitoring acoustic signals generated as the plunger falls down the tubing. When the plunger passes by a tubing collar recess, an acoustic pulse is generated that travels up the gas within the tubing. The acoustic pulses are monitored at the surface, and are converted to an electrical signal by a microphone. The signal is digitized, and the digitized data is stored in a computer. Software processes this data along with the tubing and casing pressure data to display plunger depth, plunger velocity and well pressures vs. time. Plunger arrival at the liquid level in the tubing and plunger arrival at the bottom of the tubing are identified on the time plots. Inflow performance is calculated. Software displays the data and analysis in several formats including a graphical representation of the well showing the tubing and casing pressures, plunger location, gas and liquid volumes and flow rates in the tubing and annulus, and inflow performance relationship at operator selected periodic intervals throughout the cycle. Several field cases are presented to show how this information is applied to optimization of plunger lift operations.
Abstract:
There is disclosed a process for purification of waste waters accumulating from the production of pulp, particularly from chlorine bleaching of pulp, which comprises the combination of the following steps:(a) release of solid particles from the waste water in a series-connected, mechanical purification stage,(b) introduction of the pre-cleaned waste water into an electrolysis installation, wherein the waste water is subjected to constant movement during an anodic oxidation treatment, and an electric potential differential is plotted between the electrodes and the pH of the waste water is set and maintained at approximately 1 to 6.5 in a known manner,(c) transfer of the waste water thus treated from stage (b) into a flocculation (sedimentation) zone, in which an aqueous solution of a powerful cationic polyelectrolyte is fed to the waste water at room temperature and under constant movement, and the pH is set and maintained at 1 to 6.5, and flocculation of colloids and suspended components occurs,(d) transfer of the waste water thus treated together with the flocculated products from stage (c) into another zone, in which the flocculated products are separated out,(e) neutralization of the waste water which is freed of the flocculated products, and(f) transfer of the neutralized waste water into an activated sludge installation, in which, with addition of additive nutrient materials, suitable microorganisms cause biological decomposition of the organic products still present in the waste water, whereupon the waste water which is thus clarified is discharged into a receiving stream.
Abstract:
A system for wirelessly monitoring a well fluid extraction process, which operates in conjunction with a host computer. The system includes a wireless base that has a base radio and a communication port to interface with the host computer. The system also has a first remote with a first remote radio that communicates with the base radio using a radio protocol. The first remote also has a first sensor interface that can receive a first sensor signal. The first remote digitally samples the first sensor signal at a predetermined sampling rate, and then communicates first sampled data to the wireless base through the radio protocol. A host software application, which executes on the host computer, receives the first sampled data from the wireless base communication port.