Abstract:
The invention relates to an apparatus for the calibration of a thermometer in situ, wherein the apparatus has a temperature sensor (S) for determining a temperature (T); wherein a reference element (K) is provided for calibrating the temperature sensor (S); wherein the reference element (K) at least partially comprises a ferroelectric material (D), which experiences a phase transformation at least one predetermined temperature (TPh) in a temperature range relevant for calibrating the temperature sensor (S).
Abstract:
An apparatus for determining and/or monitoring at least one process variable. The apparatus includes: at least one sensor element, which is connected to at least one connection line; and at least one conductor element, which is connected to the connection line. At least one formed part is provided; that at least one opening is provided in the formed part for introduction of the connection line; that at least one opening is provided in the formed part for introduction of the conductor element; and that there is provided in the formed part at least one chamber section, into which open the opening for introduction of the connection line and the opening for introduction of the conductor element.
Abstract:
The invention relates to an apparatus for the calibration of a thermometer in situ, wherein the apparatus has a temperature sensor (S) for determining a temperature (T); wherein a reference element (K) is provided for calibrating the temperature sensor (S); wherein the reference element (K) at least partially comprises a ferroelectric material (D), which experiences a phase transformation at least one predetermined temperature (TPh) in a temperature range relevant for calibrating the temperature sensor (S).
Abstract:
A thermal, flow measuring device for determining and/or monitoring flow of a measured medium through a measuring tube. The thermal, flow measuring device includes: a first pin-shaped shell and at least a second pin-shaped shell; a first resistance thermometer and at least a second resistance thermometer. At least the first resistance thermometer is embodied so as to be heatable, wherein the resistance thermometers, in each case, have a first surface, and at least a second surface, which lies opposite the first surface. The first pin-shaped shell surrounds the first resistance thermometer, and the second pin-shaped shell surrounds the second resistance thermometer. The pin-shaped shells are fillable with a fill material; wherein, in each case, at least one spacer is placeable between the pin-shaped shell and the first surface of the resistance thermometer, and the second surface of the resistance thermometer is at least partially covered with fill material.
Abstract:
A process automation system for determining, monitoring and/or influencing different process variables and/or state variables in at least one manufacturing or analytical process. Included is: at least one control station; and a plurality of field devices; wherein in each field device at least one sensor is provided for ascertaining a measured value of a process variable and/or state variable and/or an actuator is provided for influencing a process variable and/or state variable by means of an actuating value. Each field device makes available its cyclically or acyclically ascertained, measuring-device-specific, measured values and/or actuating values of the process variable and/or state variable to every other field device of the process automation system as information, and the current information of all ascertained measured values and/or actuating values of the process variables and/or state variables is available to each field device as a current process-state-vector.
Abstract:
A thermal, flow measuring device for determining and/or monitoring the flow of a measured medium through a measuring tube. The thermal, flow measuring device includes: a first pin-shaped shell and at least a second pin-shaped shell; a first resistance thermometer and at least a second resistance thermometer. At least the first resistance thermometer is embodied so as to be heatable, wherein the resistance thermometers, in each case, have a first surface, and at least a second surface, which lies opposite the first surface. The first pin-shaped shell surrounds the first resistance thermometer, and the second pin-shaped shell surrounds the second resistance thermometer. The pin-shaped shells are fillable with a fill material. In each case, at least one spacer is placeable between the pin-shaped shell and the first surface of the resistance thermometer, and the second surface of the resistance thermometer is at least partially covered with fill material.
Abstract:
A thermal flow measuring device and method for the manufacture of a thermal flow measuring device with a housing, which has at least one shell. A temperature sensor element is arranged in the shell which borders the housing. Each first point of an edge terminating the outside of the shell in the region of a second end section of the shell has a distance to the longitudinal axis of the shell, which is at least 0.2 mm greater than the distance of all second points of the outside of the shell to the longitudinal axis of the shell, with a first point of the edge, in each case, having a distance projected on the longitudinal axis of the shell from the first point of the edge of at least 0.2 mm in the direction of the first end section of the shell.
Abstract:
Method for manufacturing a measuring apparatus for determining and/or monitoring at least one process variable. At least one sensor element is inserted into an at least partially pot-shaped mold, and the mold is at least partially filled with a casting material composed at least of a first component and a second component. The mold is filled with the casting material, at least partially, with at least the following steps at least one predeterminable amount of the first component of the casting material is charged into the mold; at least one predeterminable amount of the second component of the casting material is charged into the mold; and the mold is vibrated and/or caused to oscillate with a predeterminable frequency. Furthermore, a method for filling an at least partially pot-shaped mold is disclosed.
Abstract:
Method for manufacturing a measuring apparatus for determining and/or monitoring at least one process variable. At least one sensor element is inserted into an at least partially pot-shaped mold, and the mold is at least partially filled with a casting material composed at least of a first component and a second component. The mold is filled with the casting material, at least partially, with at least the following steps at least one predeterminable amount of the first component of the casting material is charged into the mold; at least one predeterminable amount of the second component of the casting material is charged into the mold; and the mold is vibrated and/or caused to oscillate with a predeterminable frequency. Furthermore, a method for filling an at least partially pot-shaped mold is disclosed.
Abstract:
A thermal, flow measuring device for determining and/or monitoring the flow of a measured medium through a measuring tube. The thermal, flow measuring device includes: a first pin-shaped shell and at least a second pin-shaped shell; a first resistance thermometer and at least a second resistance thermometer. At least the first resistance thermometer is embodied so as to be heatable, wherein the resistance thermometers, in each case, have a first surface, and at least a second surface, which lies opposite the first surface. The first pin-shaped shell surrounds the first resistance thermometer, and the second pin-shaped shell surrounds the second resistance thermometer. The pin-shaped shells are fillable with a fill material. In each case, at least one spacer is placeable between the pin-shaped shell and the first surface of the resistance thermometer, and the second surface of the resistance thermometer is at least partially covered with fill material.