摘要:
The present invention relates to a single photon detector (SPD) at telecom wavelength of 1.55 μm based on InGaAs/InP avalanche photodiode (APD). In order to operate the SPD at a low after-pulse noise, a DC bias voltage lower than the breakdown voltage is applied to an InGaAs/InP APD. A bipolar rectangular gating signal is superimposed with the DC bias voltage and applied to the APD so as to exceed the breakdown voltage during the gate-on time of each period of the gate signal. The use of the bipolar rectangular gating signal enabling us to operate the APD well below the breakdown voltage during the gate-off time, thereby make the release of the trapped charge carriers faster and then reduces the after-pulse noise. As a result, it permits to increase the repetition rate of the SPD.
摘要:
A method for identifying traffic information includes receiving traffic data including a first identifier, information corresponding to a predicted amount of time to traverse a particular link, and information corresponding to a location associated with the particular link, where the first identifier enables a determination of a type of the information that is included within the received traffic data. The method also includes determining a type of information included within the received traffic data based on the first identifier and determining travel time prediction information based on the predicted amount of time included in the received traffic data only if the first identifier enables a determination that the received traffic data includes a prediction related to an amount of time. The method further includes determining location information based on the information that is included in the received traffic data corresponding to the location associated with the particular link and identifying traffic information based on the determined travel time prediction information and the determined location information.
摘要:
Disclosed is a mobile robot and a controlling method of the same. An entire movement region is divided into a plurality of regions, and a partial map is gradually made by using feature points of a plurality of images of the divided regions. Then, the map is compensated into a closed curved line, thereby making an entire map. Furthermore, when the mobile robot is positioned at a boundary of neighboring regions of the cleaning region, the boundary where a closed curved line is formed, the mobile robot compensates for its position based on a matching result between feature points included in the map, and feature points extracted from images captured during a cleaning process.
摘要:
An apparatus and a method for detecting a vehicle location in a navigation system are provided. A travel angle difference and lateral and longitudinal inclinations of the vehicle are used to accurately detect the vehicle location if a vehicle location is estimated using detection signals from a sensor unit installed on a vehicle. If a value of DOP (Dilution of Positioning) of a navigation message received by a GPS (Global Positioning System) receiver is equal to or greater than a predetermined threshold, reference vehicle location information is set using vehicle location information just previously map-matched and the detection signals from the sensor unit. The vehicle location is detected using the set reference vehicle location information and the detection signals from the sensor unit.
摘要:
The present invention relates to a method for detecting a map matching position of a vehicle in a navigation system, wherein coordinates of a current vehicle location are obtained from navigation messages received by a GPS receiver using a general line equation for obtaining an intersection point between an arbitrary line and a perpendicular line drawn from an arbitrary point to the line, and the current vehicle location is matched to coordinates found through orthogonal projection on a link on a digital map closest to the obtained coordinates of the current vehicle location. The current vehicle location is detected from the navigation messages received by the GPS receiver, the detected current vehicle location is matched on the digital map to obtain coordinates P0 of the current vehicle location, the digital map is searched to find a road link closest to the obtained coordinates P0 of the current vehicle location, coordinates P1 and P2 of both end points of the searched road link are obtained, the orientation of line P1P2 defined by the coordinates P1 and P2 of the obtained road link is checked on the digital map, coordinates P of an intersection point of a perpendicular line drawn from the obtained coordinates P0 to line P1P2 are obtained, and the current vehicle location is matched to the obtained coordinates P of the intersection point.
摘要:
A method of processing traffic information includes receiving link vertex information including a first identifier and vertex components that each reveal a position along a link. The first identifier enables a determination of a type of information that is included within the received link vertex information. The method also includes determining the type of information included within the received link vertex information based on the first identifier and identifying vertex components within the link vertex information only if the first identifier enables a determination that the received link vertex information includes at least one vertex component.
摘要:
A method for identifying traffic information for at least one sub-link includes receiving traffic information including a sub-link identifier enabling a determination of whether the received traffic information includes sub-link information, traffic status information enabling a determination of traffic information for a sub-link, information identifying a link within which the sub-link is located, and sub-link location information enabling a determination of a portion of the link that corresponds to the sub-link. The method also includes determining, based on the sub-link identifier whether the received traffic information includes sub-link information and dependent on whether the sub-link identifier enables a determination that the received traffic information includes sub-link information.
摘要:
A self-tuning apparatus of vehicle speed pulse coefficient and a method thereof wherein a vehicle speed pulse coefficient is flexibly adjusted by environments in which a mobile object travels and a current status of the mobile object to thereby enable to precisely calculate a travel distance and a travel speed of the mobile object in response to a vehicle speed pulse signal. A tuning start signal is generated when a value of DOP (Dilution of Precision) and travel status of the mobile object meet a condition for tuning a vehicle speed pulse coefficient value, and the vehicle speed pulse coefficient value is calculated by a travel speed pulse coefficient tuning unit using a travel distance of the mobile object discriminated by a discriminating unit and the number of vehicle speed pulse signals counted by a travel speed pulse signal counting unit during an established period of time when a tuning start signal is kept being generated during the established period of time, and the pre-established travel speed pulse coefficient value is tuned by the calculated vehicle speed pulse coefficient value.
摘要:
Disclosed are a mobile robot with a single camera capable of performing a cleaning process with respect to surroundings, and capable of more precisely making a 3D map of the surroundings including a plurality of feature points, and a method for recognizing 3D surroundings of the same. According to the method, images of the surroundings are captured, and a preset number of particles with respect to feature points of a first image are projected to a second image based on matching information of feature points extracted from the two images sequentially captured, thereby extracting 3D information of the surroundings.
摘要:
A method for controlling a robot cleaner includes: detecting a cleaning target space, setting a cleaning region within the detected cleaning space and cleaning the set cleaning region; if the set cleaning region is completely cleaned, moving to a not-yet-cleaned region adjacent to a cleaning completion spot of the cleaning region; and setting a new cleaning region in the not-yet-cleaned region and performing cleaning. Without repeating a cleaning region in the cleaning target space, the robot cleaner can extend its cleaning region, so the cleaning efficiency of the robot cleaner can be improved. Also, the robot cleaner can be smoothly enter a new cleaning target space or released therefrom. In particular, even when the entrance of the new cleaning target space is narrow, the robot cleaner can smoothly enter the new cleaning target space and gets out thereof.