Image processing apparatus and method for real-time motion detection
    1.
    发明授权
    Image processing apparatus and method for real-time motion detection 有权
    用于实时运动检测的图像处理装置和方法

    公开(公告)号:US08194930B2

    公开(公告)日:2012-06-05

    申请号:US12326024

    申请日:2008-12-01

    IPC分类号: G06K9/00 H04B1/66

    摘要: An image processing apparatus and method for real time motion detection is provided. In the apparatus, a sub-sampling module receives and sub-samples a current image and a plurality of previous images and a census transform module performs census transform on each of the sub-sampled images to obtain a census vector. A correlation calculation module calculates and compares correlation values between the current image and the plurality of previous images and detects a region having highest correlation. A motion detection module tracks positions of pixels corresponding to the region having the highest correlation to detect motion information in the images. The image processing apparatus and method can obtain, in real time, the direction and speed of an object that is in motion in each image.

    摘要翻译: 提供了一种用于实时运动检测的图像处理装置和方法。 在该装置中,子采样模块接收当前图像和多个先前图像的子样本,并且普查变换模块对每个子采样图像执行普查变换以获得普查向量。 相关计算模块计算并比较当前图像和多个先前图像之间的相关值,并检测相关性最高的区域。 运动检测模块跟踪与具有最高相关性的区域对应的像素的位置,以检测图像中的运动信息。 图像处理装置和方法可以实时地获得在每个图像中运动的物体的方向和速度。

    IMAGE PROCESSING APPARATUS AND METHOD FOR REAL-TIME MOTION DETECTION
    2.
    发明申请
    IMAGE PROCESSING APPARATUS AND METHOD FOR REAL-TIME MOTION DETECTION 有权
    图像处理装置和实时运动检测方法

    公开(公告)号:US20090245586A1

    公开(公告)日:2009-10-01

    申请号:US12326024

    申请日:2008-12-01

    IPC分类号: G06K9/00

    摘要: An image processing apparatus and method for real time motion detection is provided. In the apparatus, a sub-sampling module receives and sub-samples a current image and a plurality of previous images and a census transform module performs census transform on each of the sub-sampled images to obtain a census vector. A correlation calculation module calculates and compares correlation values between the current image and the plurality of previous images and detects a region having highest correlation. A motion detection module tracks positions of pixels corresponding to the region having the highest correlation to detect motion information in the images. The image processing apparatus and method can obtain, in real time, the direction and speed of an object that is in motion in each image.

    摘要翻译: 提供了一种用于实时运动检测的图像处理装置和方法。 在该装置中,子采样模块接收当前图像和多个先前图像的子样本,并且普查变换模块对每个子采样图像执行普查变换以获得普查向量。 相关计算模块计算并比较当前图像和多个先前图像之间的相关值,并检测相关性最高的区域。 运动检测模块跟踪与具有最高相关性的区域对应的像素的位置,以检测图像中的运动信息。 图像处理装置和方法可以实时地获得在每个图像中运动的物体的方向和速度。

    Apparatus and method for detecting hands of subject in real time
    3.
    发明申请
    Apparatus and method for detecting hands of subject in real time 有权
    用于实时检测被摄体的手的装置和方法

    公开(公告)号:US20100329511A1

    公开(公告)日:2010-12-30

    申请号:US12803369

    申请日:2010-06-25

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00382

    摘要: An apparatus and method can effectively detect both hands and hand shape of a user from images input through cameras. A skin image detecting skin regions from one of the input images and a stereoscopic distance image are used. For hand detection, background and noise are eliminated from a combined image of the skin image and the distance image and regions corresponding to actual both hands are detected from effective images having a high probability of hands. For hand shape detection, a non-skin region is eliminated from the skin image based on the stereoscopic distance information, hand shape candidate regions are detected from the remaining region after elimination, and finally a hand shape is determined.

    摘要翻译: 一种装置和方法可以通过相机输入的图像有效地检测用户的手和手的形状。 使用从输入图像之一和立体距离图像检测皮肤区域的皮肤图像。 对于手部检测,从皮肤图像的组合图像中消除背景和噪声,并且从具有高概率手的有效图像检测距离图像和对应于实际双手的区域。 对于手形检测,基于立体距离信息从皮肤图像中去除非皮肤区域,从消除后的剩余区域检测手形候补区域,最后确定手形。

    SV REDUCTION METHOD FOR MULTI-CLASS SVM
    4.
    发明申请
    SV REDUCTION METHOD FOR MULTI-CLASS SVM 有权
    用于多类SVM的SV减少方法

    公开(公告)号:US20100070440A1

    公开(公告)日:2010-03-18

    申请号:US12560921

    申请日:2009-09-16

    IPC分类号: G06F15/18

    CPC分类号: G06N99/005

    摘要: An SV reduction method for multi-class SVMs is provided with which a number of SVs contained in the multi-class SVMs can be reduced without becoming trapped in a local minimum optimization solution and the reduction of the SVs can be performed at high precision and high speed. The method includes a step of selecting, from a plurality of initially present support vectors, support vector pairs zi, zj (i, j=1, 2, . . . , NS); a step of preparing a single-variable objective function with a single global maximum and determining a maximum value k of the objective function; and a step of applying the maximum value k to the support vector pairs zi and zj to determine a temporary vector Ztemp[i] of small classification errors; and the support vector pairs zi, zj are represented by the temporary vector Ztemp[i].

    摘要翻译: 提供了一种用于多类SVM的SV缩减方法,其中可以减少多类SVM中包含的多个SV,而不会被困在局部最小优化方案中,并且SV的减少可以以高精度和高的执行 速度。 该方法包括从多个最初存在的支持向量中选择支持向量对z i,z j(i,j = 1,2,...,NS)的步骤; 准备具有单个全局最大值的单变量目标函数并确定目标函数的最大值k的步骤; 以及将最大值k应用于支持向量对zi和zj以确定小分类误差的临时向量Ztemp [i]的步骤; 并且支持向量对zi,zj由临时向量Ztemp [i]表示。

    Condensed SVM
    5.
    发明授权
    Condensed SVM 有权
    简化SVM

    公开(公告)号:US08521660B2

    公开(公告)日:2013-08-27

    申请号:US12692965

    申请日:2010-01-25

    IPC分类号: G06F15/18 G06K9/62

    CPC分类号: G06K9/6269 G06N99/005

    摘要: The present invent ion provides a condensed SVM for high-speed learning using a large amount of training data. A first stage WS selector samples a plurality of training data from a training data DB, selects an optimal training vector xt among the plurality of training data, and outputs it to the WS manager. After the first stage finishes, a second stage WS selector extracts training data one by one from the training data DB and selects training data xt satisfying optimality and outputs it to the WS manager. An SVM optimizer extracts training data closest to the training data xt selected by the first and second stage WS selectors from the WS being managed by the WS manager, and condenses the two first and second training data to one training data when the distance between these is smaller than a predetermined value.

    摘要翻译: 本发明提供了一种使用大量训练数据进行高速学习的精简SVM。 第一级WS选择器从训练数据DB中抽取多个训练数据,选择多个训练数据中的最佳训练向量xt,并将其输出到WS管理器。 在第一阶段完成之后,第二阶段WS选择器从训练数据DB逐一提取训练数据,并选择满足最优性的训练数据xt并将其输出给WS管理器。 SVM优化器从WS管理器管理的WS中提取最靠近由第一和第二阶段WS选择器选择的训练数据xt的训练数据,并且当这些训练数据之间的距离为 小于预定值。

    SV reduction method for multi-class SVM
    6.
    发明授权
    SV reduction method for multi-class SVM 有权
    SV多元SVM缩减方法

    公开(公告)号:US08346687B2

    公开(公告)日:2013-01-01

    申请号:US12560921

    申请日:2009-09-16

    IPC分类号: G06F15/18

    CPC分类号: G06N99/005

    摘要: An SV reduction method for multi-class SVMs is provided with which a number of SVs contained in the multi-class SVMs can be reduced without becoming trapped in a local minimum optimization solution and the reduction of the SVs can be performed at high precision and high speed. The method includes a step of selecting, from a plurality of initially present support vectors, support vector pairs zi, zj (i, j=1, 2, . . . , NS); a step of preparing a single-variable objective function with a single global maximum and determining a maximum value k of the objective function; and a step of applying the maximum value k to the support vector pairs zi and zj to determine a temporary vector Ztemp[i] of small classification errors; and the support vector pairs zi, zj are represented by the temporary vector Ztemp[i].

    摘要翻译: 提供了一种用于多类SVM的SV缩减方法,其中可以减少多类SVM中包含的多个SV,而不会被困在局部最小优化方案中,并且SV的减少可以以高精度和高的执行 速度。 该方法包括从多个最初存在的支持向量中选择支持向量对z i,z j(i,j = 1,2,...,NS)的步骤; 准备具有单个全局最大值的单变量目标函数并确定目标函数的最大值k的步骤; 以及将最大值k应用于支持向量对zi和zj以确定小分类误差的临时向量Ztemp [i]的步骤; 并且支持向量对zi,zj由临时向量Ztemp [i]表示。

    CONDENSED SVM
    7.
    发明申请
    CONDENSED SVM 有权
    简明支持向量机

    公开(公告)号:US20100191683A1

    公开(公告)日:2010-07-29

    申请号:US12692965

    申请日:2010-01-25

    IPC分类号: G06F15/18

    CPC分类号: G06K9/6269 G06N99/005

    摘要: The present invent ion provides a condensed SVM for high-speed learning using a large amount of training data. A first stage WS selector samples a plurality of training data from a training data DB, selects an optimal training vector xt among the plurality of training data, and outputs it to the WS manager. After the first stage finishes, a second stage WS selector extracts training data one by one from the training data DB and selects training data xt satisfying optimality and outputs it to the WS manager. An SVM optimizer extracts training data closest to the training data xt selected by the first and second stage WS selectors from the WS being managed by the WS manager, and condenses the two first and second training data to one training data when the distance between these is smaller than a predetermined value.

    摘要翻译: 本发明提供了一种使用大量训练数据进行高速学习的精简SVM。 第一级WS选择器从训练数据DB中抽取多个训练数据,选择多个训练数据中的最佳训练向量xt,并将其输出到WS管理器。 在第一阶段完成之后,第二阶段WS选择器从训练数据DB逐一提取训练数据,并选择满足最优性的训练数据xt并将其输出给WS管理器。 SVM优化器从WS管理器管理的WS中提取最靠近由第一和第二阶段WS选择器选择的训练数据xt的训练数据,并且当这些训练数据之间的距离为 小于预定值。

    Apparatus and method for detecting hands of subject in real time
    8.
    发明授权
    Apparatus and method for detecting hands of subject in real time 有权
    用于实时检测被摄体的手的装置和方法

    公开(公告)号:US08588467B2

    公开(公告)日:2013-11-19

    申请号:US12803369

    申请日:2010-06-25

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00382

    摘要: An apparatus and method can effectively detect both hands and hand shape of a user from images input through cameras. A skin image detecting skin regions from one of the input images and a stereoscopic distance image are used. For hand detection, background and noise are eliminated from a combined image of the skin image and the distance image and regions corresponding to actual both hands are detected from effective images having a high probability of hands. For hand shape detection, a non-skin region is eliminated from the skin image based on the stereoscopic distance information, hand shape candidate regions are detected from the remaining region after elimination, and finally a hand shape is determined.

    摘要翻译: 一种装置和方法可以通过相机输入的图像有效地检测用户的手和手的形状。 使用从输入图像之一和立体距离图像检测皮肤区域的皮肤图像。 对于手部检测,从皮肤图像的组合图像中消除背景和噪声,并且从具有高概率手的有效图像检测距离图像和对应于实际双手的区域。 对于手形检测,基于立体距离信息从皮肤图像中去除非皮肤区域,从消除后的剩余区域检测手形候补区域,最后确定手形。