摘要:
The invention provides materials and methods for prognosing cancer, and predicting an individual's responsiveness to cancer treatments, methods of treating cancer, and materials and methods for obtaining BAD pathway gene expression profiles useful in carrying out the methods of the invention.
摘要:
The phosphorylation status of the BAD protein is a determinant of ovarian cancer cell responsiveness to platinum chemotherapy. Indirect manipulation of BAD phosphorylation status influences cisplatin sensitivity. BAD phosphorylation represents a biomarker that predicts platinum sensitivity and is a therapeutic target to increase platinum sensitivity. The methods employ phospho-specific antibody against a particular amino acid residue or site. Phospho-specific protein characterization methods include immunohistochemical (IHC), flow cytometric, immunofluorescent, capture-and-detection, or reversed phase assay.
摘要:
The phosphorylation status of the BAD protein is a determinant of ovarian cancer cell responsiveness to platinum chemotherapy. Indirect manipulation of BAD phosphorylation status influences cisplatin sensitivity. BAD phosphorylation represents a biomarker that predicts platinum sensitivity and is a therapeutic target to increase platinum sensitivity. The methods employ phospho-specific antibody against a particular amino acid residue or site. Phospho-specific protein characterization methods include immunohistochemical (IHC), flow cytometric, immunofluorescent, capture-and-detection, or reversed phase assay.
摘要:
The present invention relates to biomarkers for neoplasias such as high grade gliomas. The inventors have discovered that the overexpression of senescence associated genes (SAG) is associated with a poor prognosis in subjects with high grade gliomas. The present invention provides SAG biomarkers for predicting response to therapy for subjects having high grade glioma based on dividing the samples into high and low risk groups; diagnosing high grade glioma; monitoring progression of high grade glioma from one biological state to another; and determining efficacy of treatment for high grade gliomas.
摘要:
The present invention relates to biomarkers for neoplasias such as high grade gliomas. The inventors have discovered that the overexpression of senescence associated genes (SAG) is associated with a poor prognosis in subjects with high grade gliomas. The present invention provides SAG biomarkers for predicting response to therapy for subjects having high grade glioma based on dividing the samples into high and low risk groups; diagnosing high grade glioma; monitoring progression of high grade glioma from one biological state to another; and determining efficacy of treatment for high grade gliomas.
摘要:
The invention provides for malignancy-risk gene signatures that predict the risk of developing breast cancer, the recurrence of breast cancer, and/or the metastasis of breast cancer. These signatures have numerous clinical applications including assessing risk of breast cancer development following routine breast biopsy, assessing the need for adjuvant radiotherapy after lumpectomy, and determining the need for completion mastectomy following lumpectomy for the breast cancer patient and other treatment plans that are personalized for the patient.
摘要:
The invention provides for malignancy-risk gene signatures that predict the risk of developing breast cancer, the recurrence of breast cancer, and/or the metastasis of breast cancer. These signatures have numerous clinical applications including assessing risk of breast cancer development following routine breast biopsy, assessing the need for adjuvant radiotherapy after lumpectomy, and determining the need for completion mastectomy following lumpectomy for the breast cancer patient and other treatment plans that are personalized for the patient.
摘要:
The invention provides a molecular marker set that can be used for prognosis of breast cancer in a patient using histologically normal tissue. The invention also provides methods for evaluating prognosis of breast cancer in a patient based on a molecular molecular signature.