摘要:
Luminescent semiconductor quantum dots (QDs) conjugated with biomolecules to serve as sensitive probes for early detection of the cancer cells, specifically for ovarian cancer and lung cancer, which represents the most lethal malignancies. The luminescence characterization of the bin-conjugated QDs with cancer specific antigens using linkage molecules. Photo-enhancement is measured at various laser density power, temperatures and laser wavelengths.
摘要:
The phosphorylation status of the BAD protein is a determinant of ovarian cancer cell responsiveness to platinum chemotherapy. Indirect manipulation of BAD phosphorylation status influences cisplatin sensitivity. BAD phosphorylation represents a biomarker that predicts platinum sensitivity and is a therapeutic target to increase platinum sensitivity. The methods employ phospho-specific antibody against a particular amino acid residue or site. Phospho-specific protein characterization methods include immunohistochemical (IHC), flow cytometric, immunofluorescent, capture-and-detection, or reversed phase assay.
摘要:
Luminescent semiconductor quantum dots (QDs) conjugated with biomolecules to serve as sensitive probes for early detection of the cancer cells, specifically for ovarian cancer and lung cancer, which represents the most lethal malignancies. The luminescence characterization of the bin-conjugated QDs with cancer specific antigens using linkage molecules. Photo-enhancement is measured at various laser density power, temperatures and laser wavelengths.
摘要:
The invention provides for compositions and methods for predicting an individual's responsitivity to cancer treatments and methods of treating cancer. In certain embodiments, the invention provides compositions and methods for predicting an individual's responsitivity to chemotherapeutics, including platinum-based chemotherapeutics, to treat cancers such as ovarian cancer. Furthermore, the invention provides for compositions and methods for predicting an individual's responsivity to salvage therapeutic agents. By predicting if an individual will or will not respond to platinum-based chemotherapeutics, a physician can reduce side effects and toxicity by administering a particular additional salvage therapeutic agent. This type of personalized medical treatment for ovarian cancer allows for more efficient treatment of individuals suffering from ovarian cancer. The invention also provides reagents, such as DNA microarrays, software and computer systems useful for personalizing cancer treatments, and provides methods of conducting a diagnostic business for personalizing cancer treatments.